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Abstract—This study presents a physics-informed neural network 
(PINN) approach for solving coupled Navier-Stokes equations, 

demonstrating its effectiveness in modeling complex fluid systems 
with high accuracy. By integrating governing equations directly into 
the neural network's loss function, the proposed method ensures that 
solutions adhere to fundamental physical laws while achieving 

numerical precision on the order of 10^-7 in benchmark test cases. 
The results indicate superior computational efficiency compared to 
traditional high-precision spectral methods, with a 34% reduction in 
computation time. The success of this approach lies in its ability to 

capture multi-physics coupling effects without relying on 
conventional mesh discretization, offering a flexible and efficient 
alternative for fluid dynamics simulations. Future research directions 
include extending the method to three-dimensional problems, 

turbulence modeling, and real-time industrial applications, further 
enhancing its practicality and theoretical foundations.  
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I. INTRODUCTION  

The Navier-Stokes equations in fluid dynamics are the core 
partial differential equations describing the motion of viscous 

fluids, which are widely used in aerodynamics, meteorology, 
biomedical engineering and other fields. However, the 
numerical solution of NS equations is still a challenging 
problem due to its nonlinearity, multi-scale coupling and high-
dimensional computational complexity. Traditional numerical 
methods, such as finite-difference method (FDM), finite-

volume method (FVM) and finite-element method (FEM), 
although mature and widely used, often face the limitations of 
high computational cost and mesh-dependence when dealing 
with complex boundary conditions, high-Reynolds-number 
flows, or multiphysics-field coupling problems. 

In recent years, physical information neural networks 

(PINNs), as an emerging machine learning method, have 
shown great potential in solving partial differential equations 
(PDEs). Unlike traditional numerical methods, PINNs do not 
need to discretize the computational domain; instead, they 
directly learn the physical laws of the governing equations 
through deep neural networks and compute the higher-order 
derivatives using auto-differentials, thus avoiding the errors 

associated with numerical discretization. In addition, PINNs 
are able to naturally fuse experimental data or a priori 
knowledge to build a bridge between data-driven and physical 
laws, which provides a new paradigm for solving complex 
fluid dynamics problems. 

In this paper, we focus on the PINNs solution of the two-
dimensional coupled Navier-Stokes equations, and study its 
numerical accuracy and computational efficiency in the case 

of multi-physics field coupling. Specifically, we consider the 
following coupled PDE system: 
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where ( ) ( ) ( ), , , , ,u x y v x y w x y are the physical fields to 

be solved,   , ,    are the coupling parameters, and   , ,f g h  

are the external source terms. We use the analytical solution 
for validation and study the prediction errors of the PINNs 
under different parameter configurations. 

II. METHODOLOGY  

A. Basic Concepts of Neural Networks 

Neural Networks (NNs) are a class of computational 
models that mimic biological nervous systems and are able to 

process information through a large number of computational 
units (neurons) and the connections between them (weights). 
Neural networks perform prediction and modeling by learning 
patterns from training data. The majority of applications for 
traditional neural networks are data-driven, such as image 
classification and speech recognition. 

The basic structure of a neural network consists of an input 
layer, a hidden layer and an output layer. Every layer has a 
large number of neurons, and each neuron is connected to the 
neurons in the layer above it by weighted links. During 
training, the neural network learns by updating the weights 
through an optimization algorithm (e.g., gradient descent) to 

minimize the error between the output and the true label. 
Common types of neural networks include Fully Connected 
Neural Networks, Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs). 

With the development of deep learning techniques, Deep 
Neural Networks (DNNs) have enhanced the expressive power 

of neural networks by increasing the number of hidden layers, 
enabling them to handle more complex problems. Deep 
learning has made significant breakthroughs in areas such as 
image recognition and natural language processing, and in 
recent years, neural networks have begun to be widely used to 
solve scientific computing problems, especially in physical 

modeling and partial differential equation solving. 
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B. Definition of PINNs 

Physics-Informed Neural Networks (PINNs) are a partial 
differential equation solving method that combines deep 
learning with physical laws. The core idea is to utilize the 

neural network ( );N x   to approximate the physical field 

(e.g., velocity, pressure) to be solved and force the control 

equations, initial conditions, and boundary conditions to be 
satisfied by the loss function. Specifically, the optimization 
objective of PINNs can be expressed as: 

PDE PDE BC BC IC IC( ) ,   = + +L L L L  

Among them: 

pdeL is the PDE residual loss, which measures the degree of 

deviation of the neural network output from the control 
equation; 

bcL  and icL  force boundary conditions and initial conditions, 

respectively; 

, ,pde bc ic   are weight coefficients to balance the effects of 

different loss terms. 
 The neural network is trained by back propagation and 

gradient descent (Adam's optimizer) to minimize the total loss , 

and the final result ( );N x   is the approximate solution of 

the PDE. 

 

Fig. 1. PINN network architecture. 

 

The core advantage of PINNs lies in their ability to deal 
with complex problems that are difficult to solve by traditional 
numerical methods. Specifically, PINNs show unique 
advantages in the following aspects:  

High-dimensional problem solving: traditional numerical 
methods, such as the finite difference method and the finite 

element method, need to mesh the spatial domain when 
dealing with high-dimensional problems, which leads to a 
sharp increase in computation. In contrast, PINNs do not rely 
on meshing and are able to solve directly in high-dimensional 
space, thus avoiding the problems of meshing and high-
dimensional computational complexity. 

Complex Boundary Conditions: In traditional numerical 
methods, complex boundary conditions may require special 
treatment, such as applying special meshes in irregular regions 
or complex geometries. PINNs are able to solve partial 
differential equations under arbitrary boundary conditions 
without complex mesh treatments by embedding the boundary 

conditions in the loss function. 
Meshless methods: PINNs do not rely on meshing when 

solving partial differential equations, which allows them to 
solve in regions with complex geometries and irregular 

boundaries. Through the powerful fitting ability of neural 

networks, PINNs can naturally adapt to complex problem 
settings. 

Nonlinear problem solving: Traditional numerical methods 
may face stability and accuracy issues when dealing with 
nonlinear partial differential equations, which PINNs are able 
to handle naturally through the nonlinear mapping of the 

neural network, and optimize the loss function to ensure the 
stability and accuracy of the numerical solution. 

These features give PINNs a significant advantage in 
solving fluctuation equations and other complex physical 
problems in science and engineering. In particular, when 
dealing with problems that require high accuracy and 

efficiency as well as complex boundaries and high 
dimensionality, PINNs show advantages that are unmatched 
by traditional numerical methods. 

C. Methodology 

In this study, physically informed neural networks (PINNs) 
are used to solve the two-dimensional coupled Navier-Stokes 

equations. The core idea of the method is to embed the laws of 
physics directly into the learning process of the neural network, 
and to ensure that the network output conforms to a given 
system of partial differential equations by designing a special 
loss function. 

We construct a deep neural network model whose inputs 

are spatial coordinates (x,y) and outputs are three physical 
fields (u,v,w) to be solved. Unlike traditional data-driven 
neural networks, our model not only utilizes limited 
supervised data for training, but more importantly, calculates 
the derivatives of each order of the network output by 
automatic differentiation techniques and substitutes them into 

the control equations to construct the physical constraints. 
This unique training approach enables the network to learn 
solutions that conform to the physical laws despite the lack of 
large amounts of experimental data. 

III. EXPERIMENTS 

The efficacy of the suggested PINNs approach in solving 

the coupled Navier-Stokes equations is demonstrated in this 
work by systematic numerical experiments. The experiments 
are conducted using a standard test case, and the 
computational domain is set as a rectangular region Ω = [0,2π] 
× [0,π] with boundary conditions given exactly according to 
the known analytical solutions. The coupled Navier-Stokes 

system with analytic solutions is used for the control equations, 
where the nonlinear coupling term coefficients are taken as α 
= 1.0, β = 1.5, and γ = 2.0. 

A. Experimental setup 

The experiment adopts a two-dimensional rectangular 
computational domain Ω=[0,2π]×[0,π], and the boundary 
conditions are precisely set based on the known analytical 

solution. The analytical solution is defined as: 
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Generate training data through the analytical solution and 

verify the prediction accuracy of the model. The parameter 
values of the nonlinear coupling term are set as α = 1.0, β = 
1.5, and γ = 2.0. 
Neural network structure: 8-layer fully-connected network 
with 128 neurons per layer, the inputs are 2D spatial 
coordinates (x,y) and the outputs are three physical fields 

(u,v,w). The activation function adopts the Swish function, as 
its smooth derivative property facilitates the stable calculation 
of higher order derivatives. 
Training data: 1000 internal configuration points and 400 
boundary points are randomly generated. The boundary points 
are obtained by sampling uniformly on the four edges of the 

computational domain. 
Optimization strategy: a two-stage training strategy is used. 
The Adam optimizer is used in the pre-training phase (learning 
rate 0.001, 1000 iterations), and then switched to the L-BFGS 
optimizer for fine optimization (maximum 4000 iterations, 
convergence tolerance 1e-12). 

Loss function: the total loss consists of the PDE residual loss 
and the boundary condition loss, and the weight balance is 
realized by an adaptive adjustment strategy. 

B. Realization details and results analysis 

In this study, a deep physically-informed neural network is 
constructed to solve the coupled Navier-Stokes equations 

based on the PyTorch framework. The network adopts an 8-
layer fully-connected structure containing 128 neurons per 
layer, and uses the Swish activation function to balance the 
nonlinear expressivity with gradient stability. The input layer 
receives the normalized two-dimensional spatial coordinates 
(x,y), and the output layer simultaneously predicts the values 

of the three physical fields (u,v,w). 
The training data consists of two parts: 1000 randomly 

generated configuration points inside the computational 
domain for computing the PDE residual loss, and 400 points 
uniformly sampled on the boundary for enforcing the 
boundary conditions. To improve the training efficiency, we 

adopt a two-stage optimization strategy: first use the Adam 
optimizer for pre-training with 1000 iterations, with the 
learning rate set to 0.001; then switch to the L-BFGS 
optimizer for fine optimization, with the maximum number of 
iterations of 4000 and the convergence tolerance set to 1e-12.  

In the implementation process, we make full use of 

PyTorch's auto-differentiation function to compute the higher-
order derivatives of the network output. By building a 
customized derivative computation module, the first-order and 
second-order partial derivatives of u, v, and w with respect to 
the spatial coordinates can be accurately obtained, and these 
derivatives are directly used to construct the PDE residual 
terms. The loss function consists of the PDE residual loss and 

the boundary condition loss weighting, where the boundary 
loss weights are gradually increased to ensure that the 
boundary conditions are strictly satisfied. 

After a complete training process, the model exhibits 
excellent convergence performance. The training loss 
decreases steadily from the initial O(1) magnitude to 3.858e-

13, indicating that the physical constraints are fully satisfied. 

The evaluation results on the test set show that the maximum 

absolute errors of the three physical fields are 4.151e-7 for the 
u-field, 5.360e-7 for the v-field, and 3.384e-7 for the w-field, 
which all achieve high numerical accuracy. 

 

 
Fig. 2. Predictive solutions, analytic solutions and error maps 

 

 
Fig. 3. convergence diagram 

 

The visualization analysis further validates the 

effectiveness of the method. The predicted and analyzed 
solutions show a high degree of consistency in the full-field 
distribution, especially in the boundary region, and the 
maximum error is no more than 5e-8. The reconstruction of 
the flow field characteristics is also very accurate, and the 
vortex structure of the velocity field and the flow separation 

features are completely preserved. The error distribution plots 
show that the maximum error is concentrated in the region 
with strong nonlinear coupling effects, which is in perfect 
agreement with the physical properties of the equations. 

Compared with the traditional numerical methods, the 
present method reduces the computation time by about 34% 

while maintaining considerable accuracy. What's more, the 
method completely avoids the mesh generation process in the 
traditional method, which makes dealing with complex 
geometric domains more flexible and efficient. A single 
forward propagation of the network can obtain the full-domain 
solution, which provides the possibility of real-time simulation 

and parameter optimization. 
The experimental results show that the physical 

information neural network has unique advantages in solving 
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the coupled Navier-Stokes equations. Its end-to-end training 

approach not only simplifies the complex process of 
traditional numerical methods, but also naturally handles 
multi-physics field coupling problems. By encoding the 
physics laws directly into the loss function, the network output 
maintains physical plausibility even in regions with sparse 
training data. 

However, we also note some directions for improvement. 
The training stability of deep networks requires finer control 
strategies, especially when dealing with strongly nonlinear 
coupling terms. In addition, the computational efficiency, 
although better than that of high-precision spectral methods, 
still needs to be further improved to adapt to the solution of 

larger-scale problems. These findings provide valuable 
references for subsequent studies. 

IV. CONCLUSIONS AND FUTURE PERSPECTIVES 

In this study, we successfully validate the effectiveness of 
physically informative neural networks in solving the coupled 
Navier-Stokes equations. By constructing a deep neural 

network architecture and designing a special loss function, we 
achieve highly accurate modeling of complex fluid systems. 
The experimental results show that the method can accurately 
capture the multi-physics field coupling effects, achieve 
numerical accuracy on the order of 10^-7 in standard test cases, 
and outperform the traditional high-precision spectral methods 

in terms of computational efficiency. What's more, by 
embedding the control equations directly into the neural 
network training process, it ensures that the solution results 
strictly follow the physical laws, and this learning paradigm 
based on physical constraints provides a new way of thinking 
for solving complex fluid problems. 

Looking ahead, this research lays the foundation for 
exploration in several important directions. At the theoretical 
level, the convergence of neural networks and their error 
propagation properties need to be further investigated to 
establish stricter mathematical guarantees. At the algorithmic 
level, it is crucial to develop novel network architectures for 

3D problems and turbulence simulations, which require a 
combination of multiscale modeling ideas and adaptive 
training strategies. On the engineering application side, the 
extension of the methodology to real industrial scenarios and 
the development of lightweight models for real-time 
simulation are valuable research topics. In addition, exploring 

the coupling mechanisms with other physical fields, such as 

heat conduction or electromagnetic effects, will greatly 
expand the scope of application of the method. The 
advancement of these research directions will not only deepen 
our understanding of physical-informational neural networks, 
but also bring new breakthroughs in computational fluid 
dynamics. 
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