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Abstract—Under the development of intelligent speech technology, 
speech enhancement is in the spotlight. This paper reviews its 

progress, introduces traditional and deep learning methods, 
compares performance, summarises results, and discusses challenges 
and trends. Deep learning has advantages in speech enhancement, 
but needs to be optimised for complex scenarios. 
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I. INTRODUCTION  

Speech enhancement [1] is a fundamental task in the field of 
audio signal processing, aiming to extract pure speech from 
noisy observations to improve speech quality and 
intelligibility. By using signal processing algorithms or deep 
learning models to suppress background noise and enhance 
speech components, this field is closely related to speech 

recognition, speaker verification, and speech synthesis [2]. 
Speech enhancement plays a key role in various practical 
scenarios such as telecommunications, smart devices, and 
hearing aids [3], where high - quality speech is the core 
requirement for reliable human - machine interaction and 
communication. 

This technology uses statistical models such as Wiener 
filtering [4] or deep neural networks (DNN) [5] to convert 
noisy speech signals into clearer outputs through spectral or 
waveform processing. It bridges the gap between the original 
audio input and downstream tasks, ensuring that speech - 
based systems operate robustly in challenging environments 

with background noise, reverberation, or low signal - to - 
noise ratio (SNR). 

Closely intertwined with the progress of machine learning, 
speech enhancement has evolved from traditional methods 
relying on hand - crafted features to data - driven methods that 
automatically learn noise patterns. Deep learning architectures 

such as convolutional neural networks (CNN) [6] for time - 
frequency feature extraction and recurrent neural networks 
(RNN) [7] for modeling temporal dependencies have 
significantly improved the performance in non - stationary 
noise environments. These technologies not only improve the 
subjective auditory experience but also increase the accuracy 

of speech recognition systems in practical applications [8]. 
With the popularization of smart devices and remote 

communication tools, the demand for efficient speech 
enhancement continues to grow. It makes voice calls clearer in 
noisy environments, improves the robustness of virtual 
assistants in smart homes[9]. As research progresses, 

integrating multimodal information (such as visual cues of lip 
movements [10]) and developing lightweight models suitable 

for edge devices [11] have become key directions for 
addressing the diverse challenges of modern speech 

processing. 

II. BASIC METHODS OF SPEECH ENHANCEMENT 

A. Wiener Filtering 

Wiener filtering is a classic technique based on the minimum 

mean square error (MMSE) criterion. It estimates the optimal 
filter coefficients by using the power spectral density (PSD) of 
clean speech and noise to minimize the distortion between the 
enhanced speech and the original clean signal. For noisy 
speech frequency:   

 

The Wiener filter  is           defined as: 
 

  
 Where        and         are the spectra of clean speech and 
noise, respectively. Wiener filtering performs well in 
stationary noise, but its performance is limited in non-
stationary noise due to its dependence on accurate PSD 
estimation.      

B. Minimum Mean Square Error (MMSE) Estimation 

Methods based on MMSE (such as the MMSE short-time 
spectral amplitude (STSA) estimator) focus on estimating the 

spectral amplitude of clean speech from noisy observations. 
By modeling the posterior probability distribution of the clean 
speech spectrum, the expected mean square error between the 
estimated value and the true value is minimized. The MMSE-
STSA estimator for a certain frame t and frequency bink can 
be expressed as: 

 
Where     is a gain function derived from the prior and 
posterior signal-to-noise ratios (SNR). Although it can 
effectively restore the spectrum, it often introduces "musical 
noise" due to insufficient estimation of the spectral variance. 

C. Deep Neural Networks (DNN) 

DNN is the first deep architecture applied to speech 
enhancement. Its core advantage lies in modeling complex 
nonlinear relationships through a multi-layer perceptron to 
achieve accurate mapping at the spectral level. Specifically, 
the model takes the log-Mel spectrogram or short-time Fourier 
transform (STFT) features of noisy speech as input, performs 

nonlinear transformation through multiple fully connected 
layers (usually including ReLU activation functions and 
Dropout regularization), and finally outputs the enhanced 
speech spectral features (such as the amplitude spectrum or 
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phase spectrum of clean speech). During the training process, 
by minimizing loss functions such as the mean square error 
(MSE) or the log spectral amplitude error (LSM), the network 
is forced to learn the mapping relationship from the noisy 
spectrum to the clean spectrum. 

The advantage of DNN lies in its adaptability to non-

stationary noise. Compared with traditional statistical models 
that rely on the assumption of stationary noise, DNN can 
capture the complex distribution patterns of noise in the time-
frequency domain (such as the sparsity of impulsive noise and 
the periodicity of modulated noise) through training with 
massive data. For example, in the test on the NOIZEUS 

dataset (which contains non-stationary noises like car noise 
and factory noise), the short-time objective intelligibility 
(STOI) of the speech processed by DNN is improved by more 
than 20% compared with Wiener filtering. However, the fully 
connected layer design of DNN leads to a huge number of 
parameters (the parameters of a typical model exceed one 

million), and it lacks explicit modeling of the local correlation 
in the time-frequency domain, which limits its application in 
real-time scenarios. 

D. Convolutional Neural Networks (CNN) 

CNN has become an efficient architecture for processing 
speech time-frequency features through the local perception 

mechanism of the convolutional layer, and can be divided into 
two categories: 1D-CNN and 2D-CNN. 

1D-CNN: It directly processes the time-frequency matrix 
of the speech signal (such as the STFT magnitude spectrum) 
as a 1D sequence, and extracts local features on the time axis 
or frequency axis through a one-dimensional convolution 

kernel (usually with a length of 3 - 5). As an illustration, the 
temporal dynamics of speech can be better captured by 
modelling the correlation between adjacent frames in the time 
dimension, while convolution operations in the frequency 
domain dimension can successfully reduce noise variations 
inside the same frequency band. 

2D-CNN: It regards the time-frequency domain as a two-
dimensional image (the time axis is the horizontal axis and the 
frequency axis is the vertical axis), and simultaneously 
captures the local dependencies in the time-frequency (T - F) 
plane through a two-dimensional convolution kernel. The 
typical U-Net architecture uses an encoder-decoder structure: 

the encoder compresses features step by step through 
convolutional and pooling layers, and the decoder restores 
high-resolution time-frequency features through 
deconvolution and skip connections, achieving fine 
suppression of noise. For example, on the reverberant speech 
dataset of the REVERB challenge, the perceptual evaluation 
of speech quality (PESQ) of the U-Net model is improved by 

0.5 points compared with traditional methods, effectively 
solving the problem of spectral blurring caused by 
reverberation. 

The core advantage of CNN lies in the efficient extraction 
of local features: the weight sharing mechanism of the 
convolution operation significantly reduces the number of 

parameters (more than 50% reduction compared with DNN), 
and it has a stronger representation ability for the local 

structure in the time-frequency domain (such as speech 
formants and noise pulses), making it one of the mainstream 
architectures for end-to-end speech enhancement.     

E. Recurrent Neural Networks (RNN) and their variants 

RNN and its variants (such as LSTM and GRU) are 
designed for processing sequential data, and model the long-

term temporal dependencies of speech signals through the 
cyclic transfer of hidden states, which are suitable for the 
enhancement task of continuous speech streams. 

LSTM (Long Short-Term Memory Network): Through the 
gating mechanism of the input gate, forget gate, and output 
gate, it selectively retains or forgets historical information, 

effectively solving the gradient vanishing problem of 
traditional RNNs. For example, when processing long 
paragraphs of speech in a meeting scenario, LSTM can 
capture the speech context dozens of frames away and 
suppress noise interference across time periods (such as 
intermittent keyboard sounds). 

ConvLSTM (Convolutional Recurrent Neural Network): A 
hybrid architecture that combines CNN and LSTM. First, it 
extracts local features in the time-frequency domain through 
the convolutional layer, and then uses LSTM to model the 
temporal dependencies of the feature sequence. This "local 
perception + global modeling" mode performs excellently in 

low signal-to-noise ratio scenarios: in a Gaussian white noise 
environment with -5dB SNR, the speech intelligibility after 
being processed by ConvLSTM is improved by 15% 
compared with that of a single CNN. 

The core value of RNN-based models lies in temporal 
dynamic modeling: Compared with feedforward networks that 

only rely on the features of the current frame, RNNs fuse 
historical information through the hidden state, making them 
more suitable for scenarios where the noise statistical 
characteristics change over time (such as the periodic 
fluctuations of traffic noise). However, the computational 
complexity is relatively high (the single-frame processing time 

is increased by 30% compared with CNN), and model 
lightweight technologies (such as inter-layer pruning) are 
needed to improve real-time performance. 

F. Generative Adversarial Networks (GAN) 

GAN shifts speech enhancement from "spectrum 
regression" to "distribution alignment" through an adversarial 

training framework, significantly improving the perceptual 
quality of enhanced speech. Its core consists of two parts:  

Generator: It takes the noisy speech features as input and 
outputs the enhanced speech waveform or spectrum. The goal 
is to generate samples close to real clean speech. 
Discriminator: It takes real clean speech and generated speech 
as input and outputs the probability of authenticity 

discrimination. The goal is to distinguish the distribution 
differences between the two. 

During the training process, the generator and the 
discriminator form an adversarial game: The generator uses 
gradient backpropagation 
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III. LOSS FUNCTIONS IN SPEECH ENHANCEMENT 

Loss functions are crucial in model training, balancing 

spectral accuracy and perceptual quality. 

A. Spectral Domain Loss 

Mean Squared Error (MSE) minimizes the squared 
difference between the estimated and target clean speech 
spectra in the time-frequency domain. It is simple and easy to 
use, but it may focus on the amplitude and ignore the phase, 

resulting in artifacts in the reconstructed speech. Log Spectral 
Magnitude Loss (LSM) 

LSM acts on the log spectral magnitude, which is 
consistent with the sensitivity of human hearing to relative 
intensity differences. It is defined as: 

 

  

and     are the number of time frames and frequency 
bins. 

B.  Perceptual Loss 

Perceptual loss uses pre-trained models (such as deep 
neural networks for speech recognition or human auditory 
modeling) to measure the similarity between enhanced and 
clean speech in the perceptual feature space, ensuring that the 
enhanced speech not only conforms to spectral statistics but 
also has a natural listening experience. 

C. Adversarial loss 

In the GAN method, the adversarial loss prompts the 
generator to generate speech that can deceive the 
discriminator, enhancing the naturalness of the enhanced 
speech. The discriminator loss aims to correctly classify real 
and generated speech, forming a competitive training 
dynamic. 

IV. CHALLENGES IN COMPLEX NOISY ENVIRONMENTS 

The noise in real - world scenarios shows high diversity 
and dynamics, posing a severe test to the robustness of speech 
enhancement technology. The following analyzes the core 

challenges and cutting - edge solutions in depth from four 
dimensions: non - stationary noise, reverberation, low signal - 
to - noise ratio, and single/multi - channel characteristics: 

A. Non - stationary noise: Dynamic characteristics and 

modeling difficulties 

The core feature of non - stationary noise is that its 

statistical characteristics change rapidly over time, such as 
sudden keyboard typing sounds, multi - party conversation 
sounds in a meeting scenario, and the mixed noise of engines 
and brakes in a traffic environment. The power spectral 
density (PSD) of this type of noise fluctuates significantly in a 
short time, causing traditional methods based on the stationary 

assumption, such as Wiener filtering and MMSE estimation, 
to fail. The noise priors (such as mean and variance) they rely 
on cannot be updated in time, and problems such as over - 
suppression or residual noise are likely to occur. 

Although deep learning models have certain dynamic 
adaptability, they face two major challenges: Insufficient 
acoustic pattern coverage: It is difficult for the training data to 
cover all the noise types in reality (such as rare noises like 
airport announcements and construction drill sounds), 
resulting in weak generalization ability of the model under 

unknown noise; 
Inadequate modeling of temporal dependencies: The 

sudden characteristics of non - stationary noise require the 
model to capture millisecond - level temporal mutations. 
However, the fully connected layers of traditional DNNs and 
even the local convolution operations of ordinary CNNs are 

difficult to effectively model long - range dynamic changes. 
Cutting - edge solutions: 

Dynamic noise injection data augmentation: Randomly 
mix multiple non - stationary noises (such as more than 50 
noise categories sampled from the AudioSet dataset) during 
the training phase, and introduce transformations such as time 

shifting and amplitude modulation to force the model to learn 
the general suppression ability across noise types. For 
example, in the DNS 2023 Challenge, the model using 
dynamic augmentation improved the STOI by 12% in 
unknown noise scenarios. 

Temporal attention mechanism: Model global temporal 

dependencies through the self - attention layer in the 
Transformer. For example, introduce temporal attention heads 
in the speech enhancement model to make the model focus on 
the time - frequency features of frames with sudden noise 
changes. Experiments show that this mechanism improves the 
suppression effect of sudden noise by 8% compared with 

LSTM. 
Meta - learning: Quickly adapt to new noise distributions 

through pre - trained models. For example, the MAML (Model 
- Agnostic Meta - Learning) framework only needs 10 - 20 
new noise samples for fine - tuning, significantly improving 
the generalization ability in unknown noise scenarios. 

B. Low Signal - to - Noise Ratio (SNR): Signal Masking and 

Feature Sparsity 

In low SNR scenarios (such as industrial noise 
environments below - 10 dB and communication links under 
strong interference), the speech energy is severely masked by 
noise, showing the following characteristics: 

Spectral sparsity: The effective frequency components of 
speech are submerged by noise, and only sporadic high - 
energy points remain in the time - frequency domain; 
Imbalanced SNR: The noise power exceeds the speech power 
by more than 10 times, and it is difficult for traditional 
threshold methods (such as spectral subtraction) to distinguish 
the effective signal. 

The core problem faced by deep learning models is 
"feature collapse" - the model tends to output the average 
estimate of noise rather than retain weak speech signals. In the 
early DNN method, the STOI was only 0.55 at -5dB SNR, and 
the speech intelligibility was nearly lost. 

Targeted technology: Attention-guided feature selection: 

Introduce channel attention and spatial attention into the 
encoder-decoder architecture to enable the model to focus on 
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time-frequency units with high signal-to-noise ratio. For 
example, the SE-Net (Squeeze-and-Excitation Network) 
enhances the feature response of the speech-dominated 
frequency band through a weighting mechanism, and the STOI 
is increased to 0.72 in the -10dB scenario. 

C. Single-channel vs. multi-channel enhancement 

In terms of hardware dependence, single-channel speech 
enhancement only requires a single microphone and can be 
well adapted to lightweight devices such as mobile phones and 
earphones. However, its drawback is the lack of spatial 
positioning information, making it difficult to use the spatial 
propagation characteristics of sound for noise suppression. In 

contrast, multi-channel enhancement technology requires the 
configuration of two or more microphone arrays. Although 
this will increase the hardware cost and device volume, it can 
obtain the spatial signal differences between microphones and 
is suitable for scenarios such as in-vehicle and conference 
systems that have high requirements for noise suppression and 

are not sensitive to device volume. 
From the perspective of the noise suppression mechanism, 

single-channel enhancement mainly relies on time-frequency 
domain features (such as spectral subtraction, spectral 
mapping of deep learning, etc.) to achieve noise reduction by 
exploring the statistical differences between speech and noise. 

For example, the short-time Fourier transform features of 
noisy speech are used to train a deep neural network to learn 
the mapping relationship from the noise spectrum to the clean 
spectrum. Multi-channel enhancement makes full use of 
spatial cues such as the phase difference (such as the time 
difference of arrival TDOA) and amplitude difference (such as 

the signal strength difference ASD) between microphones. 
Through technologies such as beamforming (such as the 
minimum variance distortionless response MVDR) and blind 
source separation, it directly separates speech and noise from 
the spatial dimension and is particularly good at dealing with 
spatially directional noise (such as interference sound from a 

specific angle). 
At the level of typical algorithms, single-channel 

enhancement is mainly based on deep learning models, such 
as deep neural networks (DNN), convolutional neural 
networks (CNN), and U-Net. These models achieve efficient 
modeling of single-channel time-frequency features through 

end-to-end training. Multi-channel enhancement combines 
traditional signal processing and deep learning methods. There 
are both classic algorithms such as multi-channel Wiener 
filtering and beamforming, and multi-channel feature fusion 
models based on CNN (such as MC-CNN). The latter achieves 
more accurate noise suppression and speech reconstruction by 
processing the spatio-temporal features of multiple 

microphones. 
Technical bottlenecks and breakthroughs: 

Single-channel spatial information loss: Simulate multi-
channel effects through the "virtual array" technology. For 
example, introduce a learnable spatial filter bank in the single-
channel model, or use adversarial training to generate virtual 

microphone signals to indirectly obtain spatial features. 

Multi-channel complexity optimization: For scenarios 
sensitive to latency such as in-vehicle applications, propose a 
lightweight multi-channel model, such as MC-ResNet based 
on Depthwise Separable Convolution, which reduces the 
number of parameters by 60% while maintaining performance. 

Cross-modal fusion: Combine single-channel deep 

learning with multi-channel signal processing. For example, 
first suppress spatially correlated noise through beamforming, 
and then use DNN to process the remaining uncorrelated noise 
to form a cascaded scheme of "array enhancement + deep 
learning refinement", which improves the MOS by 1.5 points 
in the in-vehicle environment. 

V. DATASETS AND EVALUATION METRICS 

A. Commonly Used Datasets 

The TIMIT corpus is a foundational benchmark dataset in 
the field of speech research. It was developed by the National 
Institute of Standards and Technology (NIST) in the United 
States and contains 6,300 clean speech utterances from 630 

speakers (covering 8 major American dialect regions). Each 
speech segment is annotated with detailed phoneme 
information. The high purity of the spoken material and the 
variety of presenters are its main advantages. It is often used 
as the basis for mixing clean speech signals with synthetic 
noise to generate noisy training data. 

Noise mixing method: Construct training/test sets with 
different SNRs (-10dB to 20dB) by artificially adding 
stationary noises such as white Gaussian noise and pink noise, 
or non-stationary noises such as factory machinery noise and 
traffic noise. 

Application scenario: It is the main validation set for early 

speech enhancement algorithms, especially suitable for 
evaluating the model’s ability to preserve standard speech 
features (such as formants and fundamental frequencies). 

The NOIZEUS dataset was constructed by Delft 
University of Technology in the Netherlands. It deeply fuses 
the clean speech from TIMIT with 12 types of real 

environmental noises (such as car engine noise, crowd noise, 
and office keyboard noise) to form a noisy speech dataset 
covering multiple SNR levels such as 5dB, 0dB, and -5dB. Its 
unique value lies in the diversity and non-stationary 
characteristics of the noise types: 

Noise classification: It includes categories such as 

Additive Noise and Convolutional Noise, simulating the way 
noise and speech are mixed in real scenarios. 

Evaluation focus: It is specifically used to test the 
robustness of algorithms under non-stationary noise. The 
intelligibility preservation capability of the enhanced speech is 
frequently evaluated using the STOI score of NOIZEUS in the 
car noise scenario, for instance. LibriSpeech is a large-scale 

speech recognition dataset constructed by Harvard University, 
containing more than 1,000 hours of audiobook speech, 
covering speakers of different ages and accents and diverse 
text contents. Its application in the field of speech 
enhancement stems from two major advantages: 

Data scale: It contains over 100,000 voice segments, 
supports large-scale training of deep learning models, and 
reduces the risk of overfitting. 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 

 

 

5 

 
Bingyi Liu, Rongqing Fang, Ziyi Pei, Yifei Fan, Junyun Liao, and Jiangtao Yu, “An Overview of Speech Enhancement,” International 
Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 12, pp. 1-6, 2025. 

Scene authenticity: The voice content covers various 
modes such as natural conversations and readings. After noise 
mixing, it can simulate real interaction scenarios of smart 
speakers, voice assistants, etc. (e.g., background TV noise, air 
- conditioner noise). 

The REVERB (Reverberant Speech Processing) dataset is 

an authoritative benchmark for reverberant speech research. It 
is jointly released by Microsoft, Kyoto University, etc., and 
contains multi - microphone recordings of simulated 
reverberation (synthesized based on room impulse response 
RIR) and real reverberation (recorded in scenarios such as 
meeting rooms and classrooms). Its core features include: 

Reverberation parameter coverage: It simulates an RT60 
(reverberation time) from 0.3 seconds to 1.5 seconds, covering 
the reverberation characteristics from small rooms (e.g., 
offices) to large spaces (e.g., auditoriums). 

Multi - channel configuration: It provides 2 - 8 channel 
microphone array data, supporting the comparative evaluation 

of single - channel and multi - channel enhancement 
algorithms. For example, in the REVERB 2024 Challenge, 
single - channel models need to recover speech from severe 
reverberation (RT60 = 1.2 seconds). 

B. Evaluation indicators 

Objective indicators: Quantify the difference in physical 

characteristics. The Signal - to - Noise Ratio (SNR) measures 
the absolute effect of noise suppression by calculating the ratio 
of the power of the pure speech signal to the power of the 
noise signal (unit: dB). The formula is: 

 

 

Among them,       is the pure speech, and          is the noise 
signal. The advantage is that it is simple to calculate and has a 
clear physical meaning. The disadvantage is that it does not 
consider the auditory characteristics of the human ear (e.g., 
being more sensitive to low - frequency noise), and there may 
be a paradox of "high SNR but poor subjective sound quality". 

The Perceptual Evaluation of Speech Quality (PESQ) is a 
standardized indicator recommended by the International 
Telecommunication Union (ITU-T). By aligning the enhanced 
speech with the pure speech in the time - frequency domain, it 
simulates the frequency weighting and time masking effects of 
the human auditory system and outputs a score from - 0.5 

(unintelligible) to 4.5 (close to the original sound quality). Its 
advantage is that it is highly correlated with the subjective 
score (MOS) (correlation coefficient > 0.9) and is widely used 
in the quality evaluation of communication systems (e.g., 
mobile phones, IP phones). However, it has limitations in 
processing extremely low frequencies (<200Hz) and 

extremely high frequencies ( > 8kHz). 
The primary focus of Short-Time Objective Intelligibility 

(STOI) is on evaluating speech intelligibility. By calculating 
the correlation between enhanced speech and clean speech in 
the time-frequency unit, it quantifies the contribution of each 
frame of speech to intelligibility, with a range from 0 

(completely unintelligible) to 1(consistent with the 
intelligibility of the original speech)11. Its unique value lies in 
its sensitivity to low SNR scenarios: when -5dB , every 0.1 

increase in STOI corresponds to a significant improvement in 
intelligibility, making it the core evaluation indicator for 
hearing aids and in-vehicle speech systems. 

Mean Opinion Score (MOS) is the most direct subjective 
evaluation method. By recruiting 20 - 50 listeners to rate the 
enhanced speech on a 5 - point scale ( 1 = poor, 2 = fair, 3 =  

medium, 4 = good, 5 = excellent), the average score is taken 
as the final result 12. The scoring process strictly controls the 
acoustic environment (such as monitoring headphones and 
soundproof rooms) to ensure the reliability of the results. 
Although it is time - consuming and labor - intensive, it can 
truly reflect subjective feelings such as the naturalness of 

speech and noise residue, and is often used for the final 
verification before technology implementation (such as user 
surveys on the noise reduction function of mobile phones). 

VI.  CONCLUSION 

Speech enhancement technology has evolved over 
decades, gradually developing from early traditional methods 

based on statistical models to a data-driven deep learning 
paradigm, achieving milestone breakthroughs in noise 
suppression and speech quality improvement. Early methods 
such as Wiener filtering and minimum mean square error 
short-time spectral amplitude estimation rely on the 
assumption of stationary noise and manual feature design. 

Although they laid the technical foundation in simple noise 
environments, when facing non-stationary noise (such as 
sudden pulses, time-varying background chatter) and complex 
acoustic scenarios (such as strong reverberation, low signal-to-
noise ratio), due to the insufficient ability to model the noise 
statistical characteristics, problems such as speech distortion 

or noise residue often occur. 
This area has undergone a complete transformation due to 

the development of deep learning. Architectures such as Deep 
Neural Networks (DNN), Convolutional Neural Networks 
(CNN), and Recurrent Neural Networks (RNN) automatically 
mine the complex mapping relationship between noisy speech 

and clean speech in the time-frequency domain through end-
to-end learning. On real-scenario datasets such as NOIZEUS 
and REVERB, the Perceptual Evaluation of Speech Quality 
(PESQ) is increased to over 3.8, and the Short-Time Objective 
Intelligibility (STOI) exceeds 0.8, significantly surpassing the 
performance boundary of traditional methods 20% - 30% . In 

particular, the introduction of Generative Adversarial 
Networks (GAN) greatly improves the naturalness of 
enhanced speech through the adversarial training mechanism, 
increasing the Mean Opinion Score (MOS) from 3.0 of 
traditional methods to 4.2, approaching the level of the 
original speech. 

However, the implementation of the technology still faces 

multiple challenges: The dynamic time-varying characteristics 
of non-stationary noise (such as the periodic fluctuations of 
traffic noise and the multi-party interference in meeting 
scenarios) pose higher requirements for the generalization 
ability of the model. The performance of existing deep 
learning models decays by 15% - 20% under unknown noise 

types; The distortion of the speech time-frequency structure 
caused by reverberation (such as the spectral blurring caused 
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by late reverberation) still needs to rely on multi-microphone 
arrays or complex spatio-temporal modeling networks (such as 
3D-CNN and ConvLSTM), which limits the application of 
single-channel devices; The computing power limitation (CPU 
computing power<1TOPS) and low-power consumption 
requirements of edge devices (such as earphones and smart 

watches) make it difficult for mainstream models with a 
parameter quantity exceeding 10MB to run in real time. There 
is an urgent need for lightweight architectures (such as 
MobileNet variants and model pruning techniques) to 
compress the parameter quantity to less than 1MB. 

Future research needs to focus on three major directions to 

break through the bottlenecks: First, build a bridge between 
"laboratory performance" and "real scenarios", and improve 
the generalization ability of the model through dynamic data 
augmentation (such as generating rare noise samples by GAN) 
and fast adaptation of meta-learning (only requiring fine-
tuning with 10 new samples); Second, promote the innovation 

of multi-modal fusion, combine visual lip movement cues 
(reducing the false wake-up rate of far-field sound pickup by 
25%) and environmental sensor data (such as the vehicle-
mounted GPS-linked noise suppression strategy) to build an 
intelligent enhancement system with audio-visual environment 
collaboration; Third, develop efficient adaptive models, track 

noise changes in real time through an online learning 
mechanism (response delay <100ms), and combine knowledge 
distillation (reducing the parameter quantity by 70%) and 
dynamic computing allocation (reducing energy consumption 
by 40%) to achieve low-latency and low-power consumption 
deployment on edge devices. 

With the in-depth integration of 5G and the Internet of 
Things, speech enhancement technology is being upgraded 
from a single noise reduction tool to the core infrastructure of 
intelligent interaction. In scenarios such as smart speakers, 
remote video conferences, and in-vehicle voice assistants, it 
can not only improve speech intelligibility, but also be deeply 

coupled with downstream tasks such as speech recognition 
and synthesis to build a full-chain optimization system of 
"collection - enhancement - understanding - generation". 

Especially in the medical field, real-time noise reduction 
hearing aids and auxiliary communication devices for the 
hearing-impaired will significantly improve the users’ 

auditory experience through personalized model adaptation 
(such as specific person speech embedding technology). The 
continuous maturity of the technology will promote speech 
interaction from "noise tolerance" to "noise immunity", 
reshape the reliability and naturalness of human-machine 
communication in the era of Internet of Everything, and 

become an indispensable underlying technical support for the 
intelligent society. 
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