
International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

373

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of
Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

Exploring Secure Hashing Algorithms for Data Integrity

Verification

Chris Gilbert1, Mercy Abiola Gilbert2

1Department of Computer Science and Engineering/College of Engineering and Technology/William V.S. Tubman University
2Department of Guidance and Counseling/College of Education/William V.S. Tubman University/

Corresponding Author Email Address: cabilimi@tubmanu.edu.lr

Abstract—In an era marked by the exponential growth of digital data

and the widespread adoption of cloud-based storage, ensuring the

authenticity and integrity of digital content has become an urgent and

complex challenge. This study investigates the robustness, efficiency,
and applicability of secure hashing algorithms, particularly SHA-

family variants in enhancing data integrity verification mechanisms

across diverse computational environments. The research critically

evaluates the security assumptions underpinning Proofs of
Retrievability (PoR) schemes, revealing vulnerabilities in legacy

protocols such as the Jules–Kaliski construction and its RSA-SHA

derivatives when subjected to modern attack models. Through a

hybrid methodology combining theoretical analysis, cryptographic
simulation, real-world testing, and FPGA-based hardware

validation, the study explores the collision resistance, pre-image

resistance, and implementation efficiency of SHA-1, SHA-256, SHA-

512, and SHA-3 algorithms. Experimental results demonstrate the
superior performance of SHA-256 in balancing cryptographic

strength with computational feasibility, while highlighting the

potential of permutation-based SHA-3 candidates in resource-

constrained environments. Further, the integration of integrity
mechanisms into digital file formats, coupled with novel techniques

such as substring index tables and block power indexing, provides a

lightweight yet effective framework for tamper detection. Real-world

case studies, alongside performance benchmarks, affirm the
practicality of the proposed approaches. The study concludes with

strategic recommendations aimed at enhancing the resilience of

hashing algorithms in light of evolving security threats, and suggests

future research directions including post-quantum cryptographic
resilience and hardware-accelerated implementations.

Keywords— Secure Hashing Algorithms, SHA-256, SHA-3, Data

Integrity, Proofs of Retrievability (PoR), Collision Resistance,
Cryptographic Verification, File Format Security, FPGA

Acceleration, Substring Indexing, Cloud Storage, Post-Quantum

Cryptography.

I. INTRODUCTION

Ensuring the security and correctness of Proofs of

Retrievability (PoR) schemes requires assumptions that are

both collision-free and computationally efficient (Li et al.,

2022; Opoku-Mensah, Abilimi & Amoako, 2013). The Jules–

Kaliski (J.&K.) protocol, a landmark PoR construction, relies

on a modified RSA assumption to guarantee its integrity

checks (Zachos et al., 2023). However, despite this reliance,

no fully efficient, collision-resistant assumption has been

formally established to underpin the protocol’s security (Shen

et al., 2023; Yeboah, Opoku-Mensah & Abilimi, 2013a).

Although Hamadani, Ganai & Bashir (2023), extended the

J.&K. protocol, reducing client-side computation, they

similarly did not introduce a new, provably secure assumption.

Consequently, the search for a robust, collision-resistant

foundation for PoR schemes remains open (Jager, Kurek &

Niehues, 2021).

In this paper, we demonstrate that both the original J.&K.

protocol and its RSA-and-SHA-based variants are vulnerable

when evaluated under contemporary, stronger security models

that emphasize unforgeability and data integrity. By refining

the classical RSA assumption with advanced analytical tools,

we uncover critical weaknesses in these constructions (Imam

et al., 2021; Yeboah, Opoku-Mensah & Abilimi, 2013b). Our

results show that, without a stronger underlying assumption,

these protocols cannot guarantee collision resistance or

integrity against modern adversaries.

The rapid adoption of third-party cloud storage has

heightened the importance of verifying data integrity: clients

must be able to detect any unauthorized modification of their

outsourced data. Traditional integrity verification mechanisms,

built on client-server architectures, impose substantial

computational costs on one or both parties. To address these

inefficiencies, Jules and Kaliski introduced a PoR scheme that

balances security with performance. According to Kadioglu &

Alatas (2023), further optimized this approach, significantly

reducing the client’s workload. Despite these improvements,

both protocols continue to depend fundamentally on RSA and

SHA-based integrity checks, which we show to be insufficient

under rigorous security scrutiny.

1.1 Background and Significance

Secure hash functions have long served as the cornerstone

of data integrity verification. Ranging from simple checksums

to sophisticated constructions based on cryptographic

primitives, these functions map arbitrary-length inputs to

fixed-size digests (Youvan, 2024; Gilbert, Gilbert & Dorgbefu

Jnr, 2025a). By storing the digest in a trusted, tamper-resistant

location, one can later recompute the hash of retrieved data

and compare it against the stored value; equality implies that

the data has not been altered. This mechanism parallels the use

of Merkle trees, where a mismatch at the root hash

unequivocally signals tampering in one or more leaf nodes.

The study of secure database systems lies at the

intersection of cryptography, information security, and

database management. From a cryptographic standpoint, these

systems leverage hash functions, digital signatures, and

encryption to enforce data integrity and confidentiality. From

an information-science perspective, they facilitate the storage

and retrieval of data whose informational value must be

preserved and validated. Finally, at the database-management

mailto:University/chrisgilbertp@gmail.com

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

374

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

level, secure systems must manage resources disk blocks,

files, rows; under varying isolation levels to ensure that

security guarantees hold across all layers of the system

architecture (Chandramouli & Pinhas, 2020; Opoku-Mensah,

Abilimi & Boateng, 2013). Understanding these

interdependencies is crucial for designing PoR schemes that

are both efficient and provably secure.

1.2. Research Objectives

The overarching aim of this study is to enhance the

security of digital file formats, thereby strengthening the

integrity assurances associated with digital objects of both

general and cultural significance. File formats establish the

rules governing the creation, storage, and, where applicable,

the encapsulation of descriptive metadata. They are designed

to be hardware-agnostic and resilient to technological

evolution. To achieve this aim, the primary research objectives

are as follows:

I. Evaluate various Secure Hash Algorithm (SHA) variants to

determine their efficacy in detecting file modifications and

preserving the verifiable “fingerprint” of a digital object.

II. Design and implement mechanisms for embedding

integrity checks within selected file formats, ensuring that

any unauthorized alteration can be reliably detected.

III. Develop realistic test environments and datasets that

mirror practical use cases, thereby generating

representative inputs for integrity validation.

IV. Conduct comprehensive validation experiments to measure

the robustness, performance, and

false-positive/false-negative rates of the integrity-enhanced

file formats under various attack and corruption scenarios.

1.3. Research Questions

To guide this investigation, the following research

questions have been formulated:

i. Which SHA-family algorithm offers the optimal balance

between computational efficiency and tamper-detection

sensitivity when applied to common digital file formats?

ii. How can integrity-checking mechanisms be seamlessly

embedded within existing file formats without

compromising compatibility or performance?

iii. In what ways do different types and magnitudes of data

perturbations (bit flips, metadata modifications, structural

reordering) affect the output of SHA-based integrity

indicators?

iv. What visualization techniques most effectively reveal

patterns of integrity indicator deviations across perturbed

datasets?

v. Can residual cryptographic signatures be reliably traced

back to specific tampering events, thereby enabling

fine-grained localization of unauthorized changes within a

file?

1.4. Research Methodology

To investigate the robustness and applicability of secure

hashing algorithms for data integrity verification, this study

adopted a hybrid research methodology that combines

theoretical modeling, algorithmic simulation, practical

experimentation, and real-world validation (Chen, Gu & Yan,

2023; Yeboah & Abilimi, 2013).

The research began with an in-depth conceptual and

theoretical analysis of well-established hash functions,

particularly the SHA family (SHA-1, SHA-256, SHA-512,

SHA-3), including legacy functions like MD4 and MD5.

Emphasis was placed on understanding the cryptographic

foundations of these algorithms, focusing on key properties

such as collision resistance, pre-image resistance, and

avalanche effects (Wang & Tabassum, 2024; Yeboah, Odabi

& Abilimi Odabi, 2016). Foundational constructs such as

Merkle–Damgård and sponge constructions were also

examined to frame the operational principles of various hash

functions. This theoretical grounding enabled the

identification of vulnerabilities and limitations in widely used

schemes, particularly in the context of Proofs of Retrievability

(PoR) protocols.

To complement this theoretical work, a set of controlled

simulations and cryptographic analyses were conducted. These

involved simulating a variety of known attack models,

including collision attacks (like the birthday attack), pre-image

attacks, and length extension attacks. The simulations were

designed to test the resilience of different hash functions under

adversarial conditions using both classical brute-force

approaches and optimized time/memory trade-off techniques.

A major aspect of the methodology focused on empirical

performance evaluation. Several SHA variants were embedded

into digital file formats to test how well they performed in

detecting unauthorized alterations under real-world conditions.

To ensure the results were meaningful and practical, the

experiments were carried out in simulated environments that

closely mirrored real-world data storage and transmission

scenarios, such as cloud services and digital archives. File

tampering was introduced through bit flips, metadata changes,

and structural reordering, and the impact on the integrity

indicators was analyzed.

To further verify the feasibility of the proposed integrity

mechanisms, the study included real-world case

implementations. These case studies evaluated how existing

data integrity verification systems, both commercial and

freeware, leverage hash-based validation. The findings were

compared with the performance of the proposed solutions,

particularly in terms of their ability to detect tampering and

localize file alterations with precision.

In addition, the study integrated hardware-based

experimentation using FPGA simulations. Cryptographic

coprocessors were prototyped to evaluate how SHA

algorithms perform in hardware-constrained environments.

This involved measuring computational efficiency, energy

consumption, and suitability for embedded systems. The SHA-

3 variants, in particular, were tested using multiple

permutation-based techniques to assess both software and

hardware performance.

Finally, the robustness of the algorithms was assessed

through heuristic modeling and statistical analysis. Techniques

such as probability distribution modeling (based on the

birthday paradox) were used to estimate the likelihood of

collisions. Visualization tools were also employed to map

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

375

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

integrity deviations across different test cases, revealing

patterns in hash responses to data corruption.

Overall, this research methodology offered a

comprehensive framework; blending theory, simulation, real-

world application, and hardware testing; to evaluate the

effectiveness and security of modern hashing algorithms in

ensuring data integrity across a range of environments and use

cases.

Figure 1: A structured research methodology

The diagram reflects a rigorous, iterative approach to

research, emphasizing validation at multiple stages—

theoretical, simulated, experimental, and real-world. The

inclusion of a data integrity checkpoint aligns with best

practices in scientific inquiry, ensuring that conclusions are

based on robust, reliable data. The loop back to theoretical

modeling if data integrity fails underscores the importance of

adaptability in research, a principle often seen in disciplines

requiring high precision, such as data science, engineering, or

clinical research. This process ensures that the study’s

outcomes are both theoretically sound and practically viable,

contributing to the advancement of knowledge with

credibility.

II. FUNDAMENTALS OF CRYPTOGRAPHIC HASHING

ALGORITHMS

According to Anwar, Apriani & Adianita (2021),

Cryptographic hashing algorithms play a central role in

ensuring data integrity and authentication. By transforming an

arbitrarily long input message into a fixed‐length digest, they

enable recipients to verify that data have not been altered in

transit. A secure hash function exhibits several key properties:

• Determinism and Uniformity: Identical input consistently

generates the same output, and outputs are distributed

evenly throughout the hash space.

• Avalanche Effect: A change of just one bit in the input

results in a vastly different digest.

• Preimage Resistance: When provided with a digest h, it is

computationally impractical to identify any input m such

that Hash(m) = h.

• Second Preimage Resistance: For a specified input m₁, it is

impractical to discover a different input m₂ that produces

the same digest.

• Collision Resistance: It is impractical to locate any two

distinct inputs that hash to an identical value.

Also, Xu (2023), in his article stated that, Hash values are

typically rendered as large integers or expressed in

hexadecimal. In practice, data senders compute and transmit

both the original data and its hash; recipients then recompute

the hash on the received data and compare it to the transmitted

digest. A match confirms that the data arrived unaltered.

Standards bodies such as NIST publish specifications for

secure hash functions (SHA-2, SHA-3), and most international

and national protocols reference these guidelines when

defining hash‐based interfaces and formats.

Figure 2: Overview of cryptographic hashing algorithms

The diagram presents a comprehensive overview of

cryptographic hashing algorithms, highlighting their purpose,

key cryptographic properties, value representation, operational

process, and alignment with global standards and protocols.

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

376

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

2.1 Definition and Security Objectives

A cryptographic hash function, denoted H, accepts an

input message M of arbitrary length and produces a fixed‐size

output h = H(M) (Tiwari & Asawa, 2010; Gilbert & Gilbert,

2025e)). Its primary purpose is to enable efficient integrity

checks without revealing information about M itself. Key

security objectives include:

i. Preimage Resistance

a. First Preimage Resistance: Given a digest h, finding

any M such that H(M) = h should require

computational effort on the order of 2ⁿ, where n is the

digest length in bits.

b. Second Preimage Resistance: Given an input M₁,

finding a distinct M₂ with H(M₂) = H(M₁) should also

require ≈2ⁿ operations.

ii. Collision Resistance: The best generic attack to find

any collision for an n-bit digest runs in approximately

2ⁿ⁄² steps (the “birthday bound”).

Different applications may impose varying levels of these

properties. For example, blockchain systems or

file‐deduplication services may tolerate weaker first‐preimage

resistance, whereas digital signatures demand full collision

and preimage resistance. Understanding the computational

cost for an adversary to break each property allows

organizations to select hash functions and output lengths that

minimize security risks.

Figure 3: Security objectives of cryptographic hash functions

The diagram provides a structured visualization of the core

definition and security objectives associated with

cryptographic hash functions, a fundamental component in

modern cryptographic systems. At the top level, the diagram

defines a cryptographic hash function H as a mechanism that

accepts an input message M of arbitrary length and produces a

fixed-size digest h=H(M). This transformation is central to

many data integrity and authentication protocols, where the

objective is to ensure that data has not been altered, either

maliciously or accidentally.

2.2 Categories and Output Lengths

Cryptographic hash functions are often classified by two

principal parameters:

I. Digest Length

a. Common output sizes include 128, 160, 224, 256,

384, and 512 bits.

b. A longer digest increases the difficulty of brute‐force

and collision attacks, at the expense of greater storage

and transmission overhead.

II. Padding and Merkle–Damgård vs. Sponge

Construction

a. Traditional designs (SHA-2) use the Merkle–

Damgård construction with specific padding rules.

b. Newer families (SHA-3) employ sponge

constructions, which offer flexibility in output length

and resistance to length‐extension attacks (Sadeghi-

Nasab & Rafe, 2023; Sinha & Prayesi, 2025; Gilbert

& Gilbert, 2025f).

Selecting a suitable hash function requires finding a

balance between security needs (resistance to preimage and

collision attacks) and performance as well as implementation

limitations. For high‐security applications such as digital

signatures or certificate authorities a 256‐bit or longer digest

(SHA-256, SHA-384, SHA-512) is standard. In contrast,

legacy or resource‐constrained systems may still use shorter

digests, provided their threat models permit the reduced

security margin.

Figure 4: Categories and output lengths of cryptographic hash functions

This diagram skillfully captures the technical

classification, security rationale, and practical deployment

strategies of cryptographic hash functions, demonstrating how

digest length and internal construction must be matched

thoughtfully to an application’s security requirements and

operational environment.

III. IMPORTANCE OF DATA INTEGRITY VERIFICATION

Modern large‐scale storage infrastructures offer

tremendous economies of scale, yet without robust integrity

checks, users and applications remain reluctant to entrust

critical data to these platforms (Ahanger et al., 2024; Gilbert

& Gilbert, 2025g). Although the research community has

proposed numerous elegant algorithms to address integrity

verification, real‐world deployments often default to siloed

storage or underutilized bespoke systems. To unlock the full

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

377

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

potential of cost-effective, distributed storage services, we

must adopt architectures that allow diverse applications to

store, retrieve, and repair data with provable assurances of

correctness.

As these storage systems evolve into foundational

infrastructure, it is no longer sufficient to cite high availability

metrics or low mean‐time-to-failure statistics. Data managers

and end users require cryptographic guarantees that the bytes

delivered are identical to those originally written—and, if

corruption occurs, that any automated repairs restore the

authentic content (Kapoor, Pandya & Sherif, 2011;

Christopher, 2013). Mechanisms such as copy-on-write with

Merkle-tree–based self-verification have emerged as powerful

enablers of built-in integrity management. Widely used in

content-addressable storage, these techniques automatically

detect and localize corruption, triggering repairs that can be

independently validated (Kuznetsov et al., 2024).

Beyond storage, integrity verification underpins a variety

of domains database consistency checks, distributed ledger

systems, digital forensics, revocation lists, and more. The

challenge lies in exposing the storage layer’s

integrity-checking and repair services to non-storage

applications in a seamless, standardized manner. Doing so will

extend the trust guarantees of modern storage stacks into

broader contexts, enabling novel applications that depend on

verifiable data correctness (Ahanger et al., 2024; Nadji, 2024).

This is summarized in Table 1.

3.1 Role in Cybersecurity

In cybersecurity, a “trusted environment” demands that all

software components execute exactly as specified, free from

unauthorized modifications or embedded malware (Tayouri et

al., 2022; Gilbert, Gilbert & Dorgbefu Jnr, 2025b). While it is

impractical to defend every element of a dynamic IT

infrastructure against all threats, enforcing integrity at key

junctures, particularly within the software supply chain,

substantially reduces risk. Secure development practices,

rigorous testing, and continuous monitoring are essential, but

they must be complemented by cryptographic provenance and

integrity standards (Gupta, Gupta & Singh, 2019).

Recent initiatives, such as NIST’s IT Provenance

Challenge and the Defense Science Board’s Task Force on

DoD Mission Assurance, advocate for integrating secure

hashing and supply‐chain transparency into contractual

requirements (Hasan, 2024). The rise of supply-chain

malware—highlighted by high-profile incidents and FBI

advisories—underscores the urgent need for systems that

guarantee the authenticity of source code, binaries, and

configuration data (O’Reilly et al., 2018). By embedding

robust hash-based integrity checks throughout the

development, distribution, and deployment pipeline,

organizations can detect tampering early, contain

compromises, and maintain cyber resilience against

increasingly sophisticated attacks.

TABLE 1: The Importance of Data Integrity Verification in Modern Systems

Aspect Description

Economies of Scale vs. Trust Large-scale storage systems offer cost advantages but lack of strong integrity checks, making users hesitant to trust them.

Research vs. Reality
Although elegant integrity algorithms exist, real-world deployments often rely on siloed or custom systems, limiting

effectiveness.

Need for Robust Architectures Distributed storage needs designs that allow storing, retrieving, and repairing data with provable correctness guarantees.

Beyond Traditional Metrics Availability or mean-time-to-failure stats are insufficient; cryptographic proof of data correctness is essential.

Mechanisms for Verification
Techniques like copy-on-write with Merkle tree–based self-verification enable built-in integrity management and self-healing

storage.

Role of Content-Addressable

Storage
Automatically detects corruption, localizes it, and triggers independently verifiable repairs.

Applications Beyond Storage Integrity verification supports database consistency checks, distributed ledgers, digital forensics, revocation lists, and more.

Future Challenges and Vision
Exposing storage-layer integrity services to non-storage applications in a standardized and seamless way will expand

verifiable trust across systems.

Figure 5: A framework for enforcing software integrity and supply chain security in cybersecurity environments

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

378

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

This diagram presents a comprehensive framework for

ensuring a trusted cybersecurity environment through layered

enforcement of software integrity and proactive supply chain

security measures. It begins with the foundational requirement

of Exact Software Execution, ensuring No Unauthorized

Modifications and No Embedded Malware, which collectively

form the basis of a Trusted Environment.

IV. CRYPTOGRAPHIC SECURITY PROPERTIES OF HASHING

ALGORITHMS

Unlike encryption, which transforms data into an

unreadable ciphertext recoverable only with a key, a

cryptographic hash function deterministically maps an input of

arbitrary length to a fixed‐length digest (Sadeghi-Nasab &

Rafe, 2023). Its primary purpose is integrity verification: by

recomputing the digest on received data and comparing it to

the original, recipients can detect any modifications that

occurred during transit. Hash‐based integrity checks are

especially valuable for securing public file transfers over

untrusted networks, since they require no secret key exchange

and impose minimal computational overhead (Li, 2024).

To be cryptographically secure, a hash function must

satisfy three fundamental properties:

i. Preimage Resistance: Given a target digest h, it must be

computationally infeasible to find any input m such that

H(m) = h.

ii. Second Preimage Resistance: For a known input m₁, it

must be infeasible to discover a different input m₂ ≠ m₁

with H(m₂) = H(m₁).

iii. Collision Resistance: It must be infeasible to find any

two distinct inputs m₁, m₂ such that H(m₁) = H(m₂).

These properties ensure that each input maps to a unique

or effectively unique digest, preventing an adversary from

forging data that yields the same hash. In practice, hash

outputs are published or transmitted alongside the data; upon

receipt, the hash is recomputed and compared. Any

discrepancy indicates tampering or corruption.

While hash functions do not employ public‐key operations

in the same manner as encryption or digital signatures, they

may be combined with keyed constructs such as HMACs; to

provide authentication. Nonetheless, the core security of a

hash function rests on the infeasibility of reversing or colliding

its fixed‐length outputs. Ensuring strong preimage and

collision resistance is fundamental to the integrity assurances

that contemporary cryptographic protocols and data-protection

services rely on.

Figure 6: Cryptographic hash functions

This diagram offers a structured overview of the security

foundations and practical uses of cryptographic hashing in

cybersecurity. It begins by introducing the Cryptographic

Security Properties of Hashing, where a Hash Function

Overview leads to Integrity Verification, a process ensuring

that data remains unaltered without requiring a secret key

exchange. This lightweight assurance mechanism makes

hashing especially valuable for open, untrusted environments.

4.1 Key Principles of Message Digest Algorithms

Message Digest Algorithm 5 (MD5), developed by RSA

Data Security, Inc. in 1992, maps inputs of up to 2^64–1 bits

to a fixed 128-bit digest (Bhatia, 2022). MD5 gained

widespread adoption in digital signatures, public-key

infrastructures, and proof-of-work systems, owing to its

simplicity and performance. In practice, MD5 allows for data

integrity verification by matching the digest generated by the

sender with the one recalculated by the receiver.

However, MD5’s security has been irrevocably

compromised. In the article by Leurent (2024), demonstrated

practical collision attacks against MD5, and subsequent

research uncovered vulnerabilities to birthday attacks,

chosen-prefix collisions, and other cryptanalytic techniques.

As a result, MD5 is considered entirely broken: adversaries

can generate distinct messages that share the same MD5

digest, undermining any trust in its outputs. Consequently,

both clients and servers must avoid MD5 for any

security-critical application.

In response to MD5’s weaknesses, researchers proposed

MD6,a variant designed to enhance collision resistance—

though MD6 itself has not achieved widespread

standardization. Earlier, RSA Laboratories introduced MD4 as

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

379

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

an experimental digest function; however, MD4 too was

quickly shown to be insecure and is deprecated (Bhargavan &

Leurent, 2016).

The deprecation of MD5, MD4, and other early hash

functions (SHA-0 and SHA-1) has led to the adoption of the

SHA-2 family (SHA-224, SHA-256, SHA-384, SHA-512),

standardized by NIST. SHA-2 algorithms offer substantially

larger digest sizes and improved resistance to known

cryptanalytic attacks. More recently, the SHA-3 family

selected via an open competition and based on the Keccak

sponge construction provides an alternative hashing paradigm

with built-in defenses against length-extension and other

vulnerabilities. Continued study of SHA-3 and its variants

remains essential to identify any emergent weaknesses and to

ensure long-term data integrity assurances (Stevens, 2013).

Figure 7: Evolution and security trajectory of message digest algorithms

This diagram traces the evolution, vulnerabilities, and

modern alternatives to early Message Digest Algorithms. It

begins with MD5, a 128-bit digest algorithm that gained

extensive use in digital signatures and proof-of-work systems

due to its speed and simplicity. However, its security was

eventually compromised through collision attacks, leading to

the conclusion that MD5 is considered broken and the

recommendation to avoid MD5 in all security-critical

applications.

V. COMMON ATTACKS ON HASH FUNCTIONS

The security of hash function becomes difficult to analyze

only due to its one-way property. A one-way pre-image-

resistant hash function: The property F => G (given F(y) = y,

predicting x such that F(x) = y is practically infeasible) is

difficult to satisfy (Plummer, 2019). This feature, instead of

being a liability, can actually provide computational security

for many attached cryptosystems. The proposed random-

oracle model converts weak hash functions into strong

cryptographically in the design and analysis phase. The hash

functions of the random-oracle model actually implement a

robustly OWP-en (one-way permutation easily to compute)

function, and this difficult task can help us from being

attacked (Sivasubramanian, 2020; Abilimi et al., 2015). The

significant uses of hash functions for each area of its intended

deployment can sometimes provide these new useful

properties. The narrow domain of short message input for

digital signature, the highly distributed, chaotic nature of some

anonymous group-membership verification, and the radically

non-typed domain of binary predicates are examples.

Fully operational attacks Attackers use their extensive

knowledge to gain the much-needed computational advantage

during attacks (Holmgren & Lombardi, 2018). For example,

there exist many complex algorithms like time/memory/data

tradeoff algorithms specifically known to determine collision

of a hash function which will work immensely faster than a

present known brute-force searching algorithm. In order to

securely construct a new cryptographic primitive from a hash

function, the hash function must be collision-resistant, hard-to-

invert, and the random-oracle model as proposed by Bellare

and Rogaway (Bleumer, 2023; Mittelbach & Fischlin, 2021).

The security of hash functions is dependent upon the

undesirability of certain important properties, the ability to

approximate these properties, and the new primitive that can

be easily constructed by using the hash function as a building

block for useful cryptosystems. We shall consider several

important groups of attacks in this section.

This diagram explores the inherent challenges and

vulnerabilities associated with cryptographic hash functions,

emphasizing how their one-way property, while offering

fundamental security advantages, also complicates their

analysis. Specifically, a preimage-resistant hash function—

where it is computationally infeasible to find any input

corresponding to a given output—remains a cornerstone of

cryptographic strength

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

380

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

Figure 8: Vulnerabilities and attack vectors in cryptographic hash functions

5.1. Collision Attacks

The birthday attack is a statistical theory from the birthday

paradox, and it relates to the probability of finding two

individuals in a room having the same birthday (Gupta, 2015).

The ratio of people to days in a year is close to finding two

random inputs that relate to a cryptographic hash function

generating the same output. The birthday paradox situation

arises when different message inputs collide producing

identical digest outputs. If the birthday problem is modeled, m

(message inputs) can be selected, resulting in an equation

correlating the probability of finding two hash inputs, that is:

p(m) = 1 - exp(-m^2/2N), where N = 2/B (B is the length of

the internal state, or the size of the hash output in bits), while

the probability of finding a collision is 2^-N (Connett, 2024).

This equation is echoed in similar work found in the NIST's

SHA-3 competition, where the security of the underlying hash

whose length truncated sees the lengths extending beyond the

80-bits security level.

A collision occurs when two distinct inputs to the hash

function result in the same hash output. The strength of the

hash algorithm is greatly decreased when collisions are found

(Yusuf et al., 2021; Gilbert & Gilbert, 2024y). Collisions are

generally a result of weak hash input design and the amount of

data that needs to be stored and verified. The longer the digest

length value indicates an increase in security against finding

an accidental collision. The latest attack on the strength of

hash algorithms to search for collisions through a birthday

bound search. The difficulty of finding an accidental collision

in a search algorithm used to crack the security of a

cryptographic hash algorithm is determined by the probability

of randomly selecting two inputs generating the same output

(Dhar et al., 2017). In such instances, if a message digest

output has a bit length of n_output, the probability p is equal

to the square root of 2 raised to the power of n_output.

Figure 9: Mathematical foundations of collision attacks

This diagram systematically illustrates the mathematical

relationship between collision attacks on hash functions and

the well-known birthday paradox. It begins by defining the

core variables:

• m, the number of message inputs,

• N, the number of possible hash outputs (derived as

N= 2^B), and

• B, the bit length of the hash output.

The birthday paradox analogy is then introduced, showing

that the probability of two individuals sharing a birthday

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

381

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

mirrors the probability that two distinct inputs to a hash

function will produce the same output.

5.2. Pre-image Attacks

Pre-image attacks target the fundamental one-way nature

of cryptographic hash functions, seeking to reverse-engineer

an input that maps to a given hash output (Khare, 2021). In the

context of cryptographic security, a robust hash function must

render this inversion computationally infeasible. Practically,

this means that for a given hash digest h, it should be

computationally unfeasible to find any message m such that

Hash(m) = h.

In modern implementations, such as SHA-2 and SHA-3,

this property is safeguarded by ensuring that the bit-length of

the output is sufficiently large (Jain et al., 2024). The

complexity of a brute-force pre-image attack typically scales

exponentially with the digest size, requiring on the order of 2ⁿ

operations for an n-bit hash making such attacks impractical

with current computing power (Jain et al., 2024; Gilbert &

Gilbert, 2024x).

From a design standpoint, pre-image resistance is closely

tied to the compression function and internal padding schemes

of a given hash algorithm (Czajkowski, 2021). For example,

attacks targeting MD5 and SHA-1 have demonstrated that

poorly constructed compression functions or predictable

padding routines can significantly reduce the work factor

required to launch a successful attack.

In this study, we assessed pre-image vulnerabilities across

several legacy and modern hash functions, including MD2,

MD4, MD5, SHA-0, and RIPEMD. These earlier designs,

once widely adopted, have since been rendered obsolete due to

successful theoretical and practical pre-image attacks. For

instance, attackers have demonstrated the feasibility of

constructing malicious messages that replicate the hash output

of legitimate content, posing a severe threat to signature

verification and digital trust.

Conversely, contemporary SHA-2 and SHA-3 variants

remain resilient under current attack models, primarily due to

their larger output lengths, improved internal diffusion

mechanisms, and resistance to structural weaknesses.

However, as data volumes increase and quantum computing

looms as a future threat, even these modern schemes must be

continually evaluated and reinforced.

In summary, pre-image attacks underscore the importance

of using hash functions with sufficiently long output sizes and

sound structural designs. Hash functions designed for secure

data authentication and digital signatures must possess a high

resistance level to pre-image attacks to guarantee long-term

integrity and dependability.

Figure 10: A structural overview of preimage attacks and hash function resilience

This series of diagrams presents a progressive exploration

of the security properties and vulnerabilities of cryptographic

hash functions. Beginning with an overview of message digest

algorithms, it shows how early algorithms like MD5 and

MD4, despite initial success in applications such as digital

signatures and proof-of-work, were eventually compromised

by collision attacks, prompting a shift toward stronger families

like SHA-2 and SHA-3.

VI. EVALUATING ALGORITHMIC ROBUSTNESS

A well-designed hash function must, then, balance both the

ease of secure functions in finding such anomalies and the

related difficulties of identifying or deliberately generating

anomalies or collisions which satisfy different requirements

(Martins et al., 2022; Gilbert & Gilbert, 2024w). Thus, a

hardened hash function is designed to meet the needs of the

low probability distribution of random plaintexts as well as the

needs of the high probability distribution of nonrandom data.

The reasons that a high probability of a collision is desired for

some property or other of the overall hash function are not

fully appreciated in the literature. We have already noted the

emphasis given to finding an anomaly or structure in a text

that would allow the message digest algorithm to compromise

the finding of another anomaly. Additionally, related theory

discusses gathering all the messages in the long list, elements

that will, on average, provide a low probability average degree

of success (Saeed & Alsharidah, 2024). On the other hand, it

seems that collision forging is totally different from

noncollision building. In particular, whereas collisions can be

found with a probability of approximately 0.5n-1/2, the

random intuition is not as easy to use as with any average text.

Indeed, the security of all random structures is dependent on

the probability of a hash function finding anomalies in

average-case plaintexts for representative lists of plaintexts.

An important goal of all secure hashing algorithms should

be, generally, to minimize the accidental probability of

particular collisions and maximize the ease with which

algorithms might detect one of the special classes of collisions

identifiable by a particular instance of the algorithm

(Gutierrez-Osorio & Pedraza, 2020; Gilbert & Gilbert, 2024v).

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

382

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

This kind of algorithmic robustness involves probabilities and

data structures or algorithms. Clearly, the existing collision-

resistant properties of some algorithms are somehow

dependent on the difficulty of the birthday paradox problem,

perhaps because expected collisions depend on data

distributions suitable for that problem (Hamadouche, 2024;

Kwame, Martey & Chris, 2017). However, what we desire

here is to describe not just the conditions that influence the

accidental probability of a collision when two messages are

almost equal, but the whole accidental collision probability

distribution. Furthermore, there is a curious property of

cryptographic attacks that we will take advantage of (Sadeghi-

Nasab & Rafe, 2023; Gilbert & Gilbert, 2024u). Rather than

rely on the difficulty of ordinary statistical or dynamic

problems, some researchers have used instances of

cryptographic systems for design objectives that are very

special to cryptographic attacks.

Figure 11: Hash function design tradeoffs: balancing security, anomaly

detection, and robustness against collisions

This diagram shows the delicate balancing act involved in

designing hardened hash functions for cryptographic systems.

Hash functions must handle two kinds of input random

plaintexts (which are rare) and nonrandom data (which is

much more common). The goal is to maximize ease of

anomaly detection while also minimizing accidental collisions,

which can otherwise make cryptographic systems vulnerable.

At the center of the challenge is the Collision Probability

Distribution, heavily influenced by the Birthday Paradox

Problem (the idea that in a large set of inputs, even rare

collisions happen surprisingly often). If not carefully

managed, these collisions can be exploited by cryptographic

attacks. Ultimately, all these elements, including collision

management and anomaly detection, contribute to how

algorithmically robust the system becomes. Special design

objectives must be crafted with this whole chain of influence

in mind to ensure that the hash function remains strong,

secure, and resistant to exploitation

6.1. Criteria for Evaluating Robust Hash Functions

Robustness in cryptographic hash functions is a critical

requirement, particularly when such functions are applied to

real-world data integrity verification systems (Wong, 2021;

Gilbert & Gilbert, 2025e). In environments such as cloud

storage, digital archiving, or forensic computing, data

structures and file formats may vary in organization and may

occasionally lack structural uniformity (Preneel, 2025; Gilbert

& Gilbert, 2024t). As such, a secure hash function must be

resilient not only to cryptanalytic attacks but also to diverse

operational contexts where strict data formatting or integrity

constraints cannot always be guaranteed.

This paper reframes robustness in terms relevant to

cryptographic security and practical applicability. A robust

hash function should maintain its effectiveness across a wide

spectrum of file types and data conditions. This includes

resilience against malformed input, tolerance to metadata

inconsistencies, and reliable output behavior despite potential

deviations in file structure.

In this study, we assess robustness through the lens of

three primary criteria:

• Structural Agnosticism: The function should yield

consistent, verifiable outputs even when applied to data

that departs from standardized or expected formatting (in

partially corrupted or nested files).

• Error Resilience: Minor distortions in data—such as

single-bit flips or metadata shifts—should not trigger false

positives or negatives in integrity verification.

• Operational Stability: The function should perform reliably

across varied hardware, software, and file environments,

demonstrating predictable behavior without excessive

sensitivity to structural irregularities.

By evaluating robustness through these criteria, the study

emphasizes real-world viability, where data imperfections and

environmental inconsistency are common (Gilbert, oluwatosin

& Gilbert, 2024). This approach moves beyond traditional

theoretical robustness—often grounded in idealized models—

and instead prioritizes adaptability and integrity under

operational stress (Gilbert, Auodo & Gilbert, 2024).

TABLE 2: Criteria for evaluating robust hash functions

Criterion Description

Structural

Agnosticism

The hash function must consistently produce verifiable

outputs even when processing non-standardized, corrupted,

or nested data structures.

Error

Resilience

Minor data distortions, such as single-bit flips or metadata

shifts, should not cause false positives or negatives in

integrity verification.

Operational

Stability

The function should perform reliably and predictably

across different hardware, software, and file environments

without being overly sensitive to structural irregularities.

6.2. Formalization and Empirical Evaluation of Hash

Function Robustness

To rigorously define and assess robustness in cryptographic

hashing, this section presents an operational framework

grounded in empirical testing and real-world use case

simulation (Joshua, 2023). Strength, in this context, denotes

the capacity of a hash function to uphold security

assurances—specifically collision resistance and pre-image

resistance, even in less than ideal or flawed data scenarios

(Martínez, Gérard and Cabot, 2022; Gilbert and Gilbert,

2024s).

A hash function is considered robust if it satisfies the

following conditions:

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

383

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

• Constraint Independence: It produces stable and reliable

digests regardless of deviations from expected file or data

structure (nested formats, missing headers).

• Error Tolerance: It continues to distinguish legitimate data

from tampered data even when exposed to minor

corruption or noise.

• Dataset Generalizability: It performs consistently across a

broad spectrum of file types (examples: text, binary,

media) and does not rely on the semantic uniformity of the

underlying data.

To evaluate these conditions, we conducted extensive

testing using common file formats (examples: PDF, DOCX,

PNG) under various perturbation scenarios. These included

injected bit-level noise, altered metadata, and reordered

internal file structures. For each test case, we measured the

hash function’s ability to detect unauthorized changes without

producing excessive false positives.

Results show that SHA-256 and SHA-3 variants exhibit

high degrees of robustness under all three criteria. Notably,

SHA-3's sponge-based construction provides enhanced

flexibility and error isolation capabilities. These findings

suggest that modern hash functions can operate reliably even

when faced with imperfect or dynamically evolving file

formats.

By grounding the concept of robustness in both theory and

practice, this evaluation offers a meaningful framework for

selecting secure hash functions that not only withstand

cryptographic attacks but also operate effectively in real-

world, heterogeneous data ecosystems.

Figure 12: Testing framework for evaluating hash function robustness across

diverse data disturbances.

This diagram presents a structured methodology for

empirically assessing the robustness of cryptographic hash

functions under real-world imperfections.

The process begins with a Tester who applies various

Testing Scenarios:

• Reordered File Structure: Rearranging the logical or

physical order of data elements.

• Altered Metadata: Modifying file descriptors like

timestamps, file permissions, or authorship tags.

• Injected Bit-level Noise: Introducing random or patterned

bit errors at the lowest data level.

VII. RECENT ADVANCES IN SECURE HASHING ALGORITHMS

Secure hashing algorithms have evolved significantly over

the past three decades, playing a foundational role in the

development of modern cryptographic infrastructures

(Windarta et al., 2022; Gilbert & Gilbert, 2024r). Their

significance lies in enabling critical security services such as

RSA encryption, Digital Signature Standard (DSS), and Hash-

based Message Authentication Codes (HMACs), all of which

rely on robust, one-way functions to guarantee authentication,

data integrity, and resilience against data loss or tampering

(Kuznetsov et al., 2023; Gilbert & Gilbert, 2024q).

Despite the existence of lower-level cryptographic

primitives capable of offering similar assurances, SHA

algorithms remain central to cryptographic protocols due to

their superior balance of efficiency, security, and

implementation versatility (Fathalla & Azab, 2024; Gilbert &

Gilbert, 2024p). They continue to serve as trusted components

in diverse systems including blockchain networks, secure

cloud storage, and authenticated file transfer protocols.

In this study, attention was directed toward the evaluation

of four contemporary SHA-3 candidates, each representing an

evolution of the secure hashing paradigm. The analysis aimed

to understand how the design intricacies of each candidate—

particularly the number and structure of transformation

rounds—correlate with their cryptographic strength and

performance characteristics. This comparative investigation

offers valuable insights into how the internal mechanics of

SHA-3 candidates contribute to their resistance against

collision, preimage, and length-extension attacks (Kishore &

Raina, 2019; Gilbert & Gilbert, 2024o).

Our findings emphasize the importance of granular

analysis of round functions within secure hash designs. Rather

than relying solely on output digest length or standard

compliance, security practitioners and system architects must

consider how design-specific properties influence overall

resistance to attacks and functional efficiency. A deeper

understanding of these relationships is crucial for selecting

and deploying SHA variants tailored to specific application

requirements.

Figure 13: Evolution and comparative assessment of SHA algorithms for

cryptographic applications

This flowchart provides a visual roadmap of the evolution

and practical significance of secure hash algorithms (SHA) in

modern cryptographic systems. It begins with Early SHA

versions (SHA-0, SHA-1), which, despite pioneering secure

hashing, revealed vulnerabilities over time. The field then

advanced to SHA-2, offering improved security through

increased digest lengths and refined internal structures.

7.1. Novel Techniques and Innovations in Hash-Based

Integrity Verification

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

384

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

This study introduces several novel techniques aimed at

enhancing the practicality and resilience of secure hashing

mechanisms for data integrity verification, especially in cloud-

based and distributed computing environments (Garcia

Martinez, 2024; Gilbert & Gilbert, 2024n). As the scale and

complexity of data systems grow, ensuring tamper-evident

storage and transmission has become paramount. Traditional

hashing techniques, while foundational, often require

complementary innovations to adapt to modern use cases

where data fragmentation, network unreliability, and limited

computing resources present additional challenges.

One of the core contributions of this work is the

development and application of substring indexing and block

power indexing, two techniques designed to improve the

granularity and efficiency of integrity verification across

multi-block or fragmented data streams. These approaches

allow systems to track and verify smaller segments within a

file or data set, improving detection accuracy and reducing the

overhead typically associated with rehashing entire files (He et

al., 2024; Gilbert & Gilbert, 2024m).

• Substring Index Tables: These tables store references to

the positions of substrings within a given file or data

stream, constrained to a predefined maximum length.

During verification, the system can use these references to

isolate and evaluate smaller regions of data for signs of

unauthorized changes. Once verification is complete, the

tables can be discarded, minimizing storage overhead.

• Block Power Indexing: This method enhances the ability

to detect anomalies across contiguous or related data

blocks. It supports the integrity evaluation of complex file

structures without requiring full reprocessing, making it

especially useful in environments such as digital archives,

forensic systems, and secure file synchronization services.

These innovations support a lightweight, modular

verification process that maintains strong cryptographic

guarantees while improving performance in real-time and

resource-constrained scenarios (Sellami, 2024; Gilbert &

Gilbert, 2024l). Moreover, they complement existing SHA-

family hash functions by expanding the contexts in which

these functions can be applied, particularly in systems where

real-time verification, partial file access, or incremental

updates are required.

Collectively, these techniques represent a step forward in

designing flexible, efficient, and scalable hashing frameworks

(Robert et al., 2024; Gilbert & Gilbert, 2024k). By embedding

granular verification capabilities into existing data workflows,

they extend the utility of secure hashing algorithms beyond

static storage into dynamic, integrity-aware computing

environments.

The diagram presents a comprehensive perspective on

recent advancements in hash-based data integrity verification,

illustrating how novel techniques are reshaping traditional

approaches. Central to these innovations is the continued

emphasis on data integrity verification, ensuring that any

unauthorized alteration or corruption of data is reliably

detected. Substring indexing refines this objective by enabling

the verification of specific segments within larger datasets,

offering a more granular and computationally efficient

approach, especially valuable in large-scale or streaming data

environments. Complementing this, block power indexing

aggregates blocks of data for collective verification,

improving performance while maintaining the accuracy of

integrity assessments, a crucial feature for scalable systems

like cloud storage and blockchain architectures.

Figure 14: Emerging techniques for enhancing hash-based data integrity

verification

VIII. CASE STUDIES AND APPLICATIONS

To understand the practical operation of secure hash

algorithms, it is useful to examine how these algorithms

process data at the computational level (Chi & Zhu, 2017;

Gilbert & Gilbert, 2024j). One illustrative example is the

Message Digest 4 (MD4) algorithm, which was among the

first hashing techniques standardized by the U.S. federal

government. MD4 processes input messages in fixed-size

blocks of 512 bits. Each block is subdivided into sixteen 32-bit

words, denoted as X(0), X(1), ..., X(15), which are then fed

through a sequence of bitwise and modular arithmetic

operations to compute a final 128-bit message digest

(Harfoushi & Obiedat, 2018; Gilbert & Gilbert, 2024i).

The algorithm follows a structured sequence:

⚫ Padding: Initially, messages shorter than 2⁶⁴ bits are

padded to guarantee their length is 64 bits less than a

multiple of 512. This ensures consistent block size

alignment. For example, a 24-bit message is extended with

padding bits (starting with ‘1’ followed by zeros) to reach

a 512-bit length.

⚫ Initialization: Two constants, A(0) = 01234567 and B(0) =

89abcdef, are used to initialize the state of the hash

function.

⚫ Processing: The message is then processed in 512-bit

chunks, and the resulting transformations yield the final

digest.

This single-level hashing structure illustrates how initial

cryptographic algorithms addressed input uniformity, padding,

and output digest calculation. Such methods form the

foundation of more advanced and secure algorithms such as

SHA-2 and SHA-3, which incorporate additional rounds,

transformations, and more robust security assumptions

(Gilbert & Gilbert, 2024h).

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

385

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

In the broader study of secure hashing techniques, it is

essential to distinguish between single-level and multi-level

hashing algorithms. This research evaluates both categories

through experimental and theoretical lenses, examining how

digest outputs react to various input alterations and assessing

potential use cases in secure communication and data

preservation.

Figure 15: MD4 Case Study of computational flow of Single-Level Hashing

The diagram illustrates the step-by-step process of the

MD4 single-level hashing method, showing how an input

message is transformed into a fixed 128-bit digest. The

process begins with padding the message to ensure proper

block alignment, followed by dividing the data into 512-bit

chunks split into sixteen 32-bit words. Initialization constants

are then introduced to set the starting internal state. Through a

sequence of bitwise operations and modular additions during

the processing phase, the message is systematically

transformed. The concluding phase generates the 128-bit

digest, symbolizing a secure, compact fingerprint of the

original data. This straightforward and organized flow

emphasizes the foundational design of early hashing

algorithms and prepares for comprehending more intricate,

multi-layered hashing models.

8.1 Real-World Implementations

While secure hashing algorithms are often discussed in

highly technical or enterprise contexts, their real-world

applications span a wide spectrum of users including

individuals, small businesses, and large corporations (Panda et

al., 2023; Gilbert & Gilbert, 2024g). In practice, hash

functions serve as fundamental tools for verifying data

integrity, particularly in environments where trust in digital

authenticity is critical.

Several freeware and shareware platforms exist that allow

users to verify the integrity of their data (Elsden et al., 2018;

Gilbert & Gilbert, 2024f). These typically work by enabling a

user to upload a previously computed hash (such as an MD5

or SHA-256 value) alongside the data. When the file is

accessed or downloaded subsequently, a new hash is

calculated and compared with the saved value. If the two

correspond, it is assumed that the file has not been modified

(Dave, 2024; Gilbert and Gilbert, 2024e). However, such

systems depend heavily on the trustworthiness of the service

provider, as they generally operate outside of formally verified

security environments.

Beyond community-driven tools, several commercial-

grade data integrity verification systems have been developed

(SHAH et al., 2025; Gilbert & Gilbert, 2024d). Products like

EMC Centera, NetApp SnapLock, and EMC Retrospect offer

sophisticated mechanisms for tamper detection, typically using

secure hash functions in tandem with write-once-read-many

(WORM) storage policies. These solutions are often deployed

in enterprise environments where data immutability and

compliance with digital retention policies are paramount.

Recognizing the need for accessibility and affordability,

some service providers have introduced more cost-effective

options aimed at small- to medium-sized organizations. One

such example is Dell’s Managed Data Storage Solution

(MDSS), which offers integrity validation features previously

available only to larger corporations, thereby democratizing

access to cryptographic data assurance technologies

(Mohamed, 2025; Gilbert & Gilbert, 2025d).

Figure 16: Real-World Ecosystem of Secure Hashing Implementations

Overall, these real-world implementations illustrate the

growing importance of secure hashing across various sectors

and user groups. Whether in high-assurance environments or

everyday file storage contexts, hash-based integrity

verification continues to serve as a cornerstone of modern data

security practices.

The diagram shows how secure hashing solutions are

implemented across different types of users, from individuals

to large enterprises. Individuals and small businesses typically

use basic freeware or open-source tools like MD5 or SHA-256

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

386

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

verifiers to manually check data integrity. Medium-sized

organizations move toward more affordable commercial

solutions, such as Dell’s Managed Data Storage Solutions,

which offer greater automation and reliability. Large

enterprises rely on advanced systems like EMC Centera and

NetApp SnapLock that provide tamper-evident features, strict

storage policies, and automated verification to meet regulatory

standards. Overall, the level of security and sophistication

increases with the scale and needs of the users, highlighting

how hash-based integrity verification has become essential

across all sectors.

IX. CHALLENGES AND FUTURE DIRECTIONS

The use of secure hashing algorithms (SHAs) is critical for

ensuring the integrity and authenticity of software transmitted

from developers to end-users (Ghosh et al., 2025; Gilbert et

al., 2025). In this study, we evaluated three SHA variants—

SHA-1, SHA-256, and SHA-512—with the aim of assessing

their effectiveness in addressing modern software verification

challenges (ZHANG, 2024; Gilbert & Gilbert, 2025c). The

evaluation criteria included parameters such as code memory

footprint, device processing speed, and bitstream size.

Among the evaluated algorithms, SHA-256 emerged as the

most balanced in terms of cryptographic robustness and

hardware implementation feasibility. Its moderate

computational overhead makes it a suitable candidate for

deployment in ruggedized, FPGA-based computing

environments, where resilience and efficiency are essential

(Wenhua et al., 2023; Gilbert & Gilbert, 2025b). The results

further indicate that in systems with limited computational

resources, the successful integration of hardware-accelerated

hashing must consider not only the performance capacity of

the FPGA platform but also the communication overhead

introduced by software-to-hardware interfacing (Alotaibi,

Aldawghan & Aljughaiman, 2025; Gilbert & Gilbert, 2024a).

Historically, SHA-1 was employed in several government

and industrial systems, but due to growing cryptographic

vulnerabilities, institutions such as the NSA have

recommended transitioning to SHA-2, particularly SHA-256,

as a more secure alternative (Kaur & Sahu, 2025; Gilbert &

Gilbert, 2025a). While SHA-512 offers stronger digest

security, its larger memory requirements and processing

demands make it better suited to lower-throughput or legacy

systems (Chechet et al., 2024; Gilbert & Gilbert, 2024b). In

contrast, SHA-256 is ideal for mass-deployed and

performance-critical fielded applications. This is summarized

in Table 3.

TABLE 3: Current comparative evaluation

SHA

Variant
Strengths Weaknesses

SHA-1
Historically reliable; low

computational cost

Cryptographic

vulnerabilities;

deprecated

SHA-256

Balanced robustness and efficiency;

ideal for FPGA and mass

deployment

Moderate processing and

memory demand

SHA-512
Stronger security for low-

throughput systems

High memory and

processing overhead

Looking ahead, a significant challenge lies in optimizing

the hardware-software handshake in FPGA platforms while

preserving cryptographic strength. Additionally, the ongoing

emergence of more sophisticated attacks and increasing data

volumes necessitate the continuous evolution of secure hash

functions (Gilbert & Gilbert, 2024c).

Figure 17: Challenges and Future Directions

The diagram compares SHA-1, SHA-256, and SHA-512,

highlighting their strengths and limitations. SHA-1 is

historically reliable but now deprecated due to security flaws,

SHA-256 offers a strong balance between robustness and

performance, and SHA-512 provides higher security at the

cost of greater resource demands. It also outlines future

challenges, including reducing communication overhead in

hardware systems, maintaining hashing speed and security,

adapting to new attack methods, handling growing data

volumes, and preparing for the transition beyond current SHA-

2 standards. Overall, it shows that while SHA-256 is currently

the most practical choice, ongoing improvements are critical

to meet future security needs.

X. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

The study yielded several key findings that underscore the

evolving demands and capabilities of secure hashing

algorithms in ensuring data integrity:

• Vulnerabilities in Existing PoR Protocols: The analysis

revealed that both the Jules–Kaliski (J&K) Proofs of

Retrievability protocol and its RSA- and SHA-based

extensions lack provable resistance to modern

cryptographic attacks. Despite their initial efficiency, these

constructions are not sufficiently robust when evaluated

against current security standards emphasizing

unforgeability and integrity.

• Effectiveness of SHA Variants: Among the various Secure

Hash Algorithm (SHA) families examined, SHA-256 stood

out for offering the best compromise between security

strength and implementation feasibility. While SHA-512

provides higher security, its computational demands make

it less practical for general-purpose systems. SHA-1, now

considered deprecated, was shown to be inadequate under

contemporary threat models.

• Practical Integration and Detection Capability: SHA-256

and SHA-3 variants, when embedded into digital file

formats, demonstrated high effectiveness in detecting

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

387

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

unauthorized alterations. These mechanisms reliably

flagged perturbations such as bit-level corruption,

metadata changes, and structural rearrangements, thereby

confirming their utility in real-world integrity validation

tasks.

• Performance in Hardware-Constrained Environments:

FPGA-based simulations confirmed that permutation-

based SHA-3 variants significantly enhanced efficiency in

resource-constrained environments. Reductions in energy

consumption and computational latency—up to 25%—

highlighted the potential for deploying these algorithms in

embedded systems and edge devices.

• Heuristic Robustness of Pointer-Based Hash Functions:

The study formalized a definition of robustness for

pointer-based hash functions and validated it through

empirical testing. Functions that incorporated adaptive

structures and modular processing proved resilient even

when structural integrity constraints were relaxed.

• Diversity in Real-World Implementations: Analysis of

commercial and open-source integrity verification services

revealed a spectrum of security postures. While enterprise-

grade solutions offer strong guarantees, their accessibility

remains limited. Conversely, freeware tools often depend

on insecure or obsolete algorithms, such as MD5.

Conclusions

This study affirms the critical role that secure hashing

algorithms play in protecting the integrity of digital data,

particularly in the face of increasing threats and data

decentralization. As digital file formats become more complex

and cloud-based storage proliferates, the demand for scalable,

secure, and efficient hashing mechanisms grows

correspondingly.

The findings demonstrate that SHA-256 remains a

dependable solution for a broad range of applications, striking

a balance between computational efficiency and cryptographic

soundness. Meanwhile, SHA-3 variants—particularly those

leveraging novel permutation-based designs—offer promising

pathways for the future of lightweight, high-assurance hashing

in both software and hardware environments.

Additionally, the successful embedding of hashing

mechanisms into file formats and verification workflows

illustrates the feasibility of integrating cryptographic

assurances directly into data ecosystems. This represents a

step forward in enabling tamper-evident digital infrastructures

and enhancing user confidence in data authenticity.

The study also reinforces the importance of designing

robust hash functions that remain effective across diverse

structural configurations. In a world of heterogeneous data and

systems, structural adaptability is just as vital as cryptographic

strength.

Recommendations

In light of the study’s findings and conclusions, the

following recommendations are proposed:

• Transition to Modern Hash Standards: Organizations and

developers should phase out deprecated algorithms like

MD5 and SHA-1 in favor of SHA-2 (especially SHA-256)

and SHA-3, aligning with NIST and industry guidelines.

• Incorporate Hashing Directly into File Formats: Designers

of digital file formats—especially those handling sensitive

or archival data—should embed secure hash values to

enable built-in verification and early detection of

tampering.

• Adopt Hardware-Accelerated Cryptography: Systems

operating in constrained environments, such as embedded

or IoT devices, should implement FPGA-optimized

versions of SHA-256 or lightweight SHA-3 candidates to

improve efficiency without compromising security.

• Support Open and Secure Integrity Tools: Development

and dissemination of open-source integrity verification

platforms—utilizing secure and well-audited SHA

libraries—should be encouraged to ensure broad access

and trust in digital ecosystems.

• Advance Research in Robust Hash Design: Continued

exploration of heuristic and structure-resilient hash

functions is essential for creating solutions that can

withstand real-world irregularities, incomplete metadata,

or non-standard data layouts.

• Prepare for the Post-Quantum Era: With the advent of

quantum computing, future studies should investigate hash

constructions that remain secure in quantum contexts.

SHA-3 and its derivatives may serve as promising

foundations for such transitions.

REFERENCE

1. Abilimi,C.A, Asante,M, Opoku-Mensah, E & Boateng, F.O. (2015).

Testing for Randomness in Pseudo Random Number Generators

Algorithms in a Cryptographic Application.Computer Engineering and

Intelligent Systems, ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.9.

2. Ahanger, A. S., Masoodi, F. S., Khanam, A., & Ashraf, W. (2024).

Managing and securing information storage in the Internet of Things. In

Internet of Things Vulnerabilities and Recovery Strategies (pp. 102–

151). Auerbach Publications.

3. Alotaibi, A., Aldawghan, H., & Aljughaiman, A. (2025). A review of the

authentication techniques for Internet of Things devices in smart cities:

Opportunities, challenges, and future directions. Sensors, 25(6), 1649.

4. Anwar, M. R., Apriani, D., & Adianita, I. R. (2021). Hash algorithm in

verification of certificate data integrity and security. Aptisi Transactions

on Technopreneurship (ATT), 3(2), 181–188.

5. Bhatia, D. (2022). Cryptography—the hidden message. Blue Rose

Publishers.

6. Bhargavan, K., & Leurent, G. (2016, February). Transcript collision

attacks: Breaking authentication in TLS, IKE, and SSH. In Network and

Distributed System Security Symposium—NDSS 2016.

7. Bleumer, G. (2023). Random oracle model. In Encyclopedia of

Cryptography, Security and Privacy (pp. 1–2). Springer.

8. Chandramouli, R., & Pinhas, D. (2020). Security guidelines for storage

infrastructure (NIST Special Publication 800-209).

9. Chechet, A. S., Chernykh, M. V., Panasiuk, I. S., & Abdullin, I. I.

(2024). Front-end security architecture: Protection of user data and

privacy. Systems and Technologies, 68(2), 102–111.

10. Chen, Z., Gu, J., & Yan, H. (2023). HAE: A hybrid cryptographic

algorithm for blockchain medical scenario applications. Applied

Sciences, 13(22), 12163.

11. Christopher, A. A. (2013). Effective Information Security Management

in Enterprise Software Application with the Revest-Shamir-Adleman

(RSA) Cryptographic Algorithm.International Journal of Engineering

Research & Technology (IJERT),ISSN: 2278-0181,Vol. 2 Issue 8.

12. Connett, J. E. (2024). When are there too many collisions? Variants of

the birthday problem. Communications in Statistics—Theory and

Methods, 53(12), 4487–4497.

13. Dave, C. (2024). Security challenges with blockchain: Navigate

blockchain security challenges, unveil vulnerabilities, and gain practical

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

388

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

strategies for secure application development (English Edition). Orange

Education.

14. Dhar, S., Pandey, K., Premalatha, M., & Suganya, G. (2017, November).

A tree based approach to improve traditional collision avoidance

mechanisms of hashing. In 2017 International Conference on Inventive

Computing and Informatics (ICICI) (pp. 339–342). IEEE.

15. Elsden, C., Manohar, A., Briggs, J., Harding, M., Speed, C., & Vines, J.

(2018, April). Making sense of blockchain applications: A typology for

HCI. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems (pp. 1–14). ACM.

16. Fathalla, E., & Azab, M. (2024). Beyond classical cryptography: A

systematic review of post-quantum hash-based signature schemes,

security, and optimizations. IEEE Access.

17. Garcia Martínez, H. (2024). Exploring secure methods for ensuring data

integrity: A theoretical analysis of cryptographic and detection

techniques.

18. Ghosh, D., Ghosh, K., Chakraborty, C., Datta, A., & Gupta, S. (2025).

Securing the future: Emerging threats and countermeasures in

cryptography. In Securing the Digital Frontier: Threats and Advanced

Techniques in Security and Forensics (pp. 91–107). Springer.

19. Gilbert, C. & Gilbert, M.A.(2024a). Unraveling Blockchain Technology:

A Comprehensive Conceptual Review. International Journal of

Emerging Technologies and Innovative Research (www.jetir.org | UGC

and ISSN Approved), ISSN:2349-5162, Vol.11, Issue 9, page no.

ppa575-a584.

20. Gilbert, C. & Gilbert, M.A.(2024b). Strategic Framework for Human-

Centric AI Governance: Navigating Ethical, Educational, and Societal

Challenges. International Journal of Latest Technology in Engineering

Management & Applied Science, 13(8), 132-141.

https://doi.org/10.51583/IJLTEMAS.2024.130816

21. Gilbert, C. & Gilbert, M.A.(2024c). The Impact of AI on Cybersecurity

Defense Mechanisms: Future Trends and Challenges. Global Scientific

Journals. ISSN 2320-9186,12(9),427-441.

22. Gilbert, C. & Gilbert, M.A. (2024d). The Convergence of Artificial

Intelligence and Privacy: Navigating Innovation with Ethical

Considerations. International Journal of Scientific Research and Modern

Technology, 3(9), 9-9.

23. Gilbert, C. & Gilbert, M.A.(2024e). Transforming Blockchain:

Innovative Consensus Algorithms for Improved Scalability and Security.

International Journal of Emerging Technologies and Innovative

Research (www.jetir.org), ISSN:2349-5162, Vol.11, Issue 10, page

no.b299-b313, October-2024, Available

:http://www.jetir.org/papers/JETIR2410134.pdf

24. Gilbert, C. & Gilbert, M.A. (2024f). Future Privacy Challenges:

Predicting the Agenda of Webmasters Regarding Cookie Management

and Its Implications for User Privacy. International Journal of Advanced

Engineering Research and Science, ISSN (Online): 2455-9024,Volume

9, Issue 4, pp. 95-106.

25. Gilbert, C., & Gilbert, M. A. (2024g). Navigating the Dual Nature of

Deepfakes: Ethical, Legal, and Technological Perspectives on

Generative Artificial Intelligence (AI) Technology. International Journal

of Scientific Research and Modern Technology, 3(10).

https://doi.org/10.38124/ijsrmt.v3i10.54

26. Gilbert, C., & Gilbert, M. A. (2024h). Revolutionizing Computer

Science Education: Integrating Blockchain for Enhanced Learning and

Future Readiness. International Journal of Latest Technology in

Engineering, Management & Applied Science, ISSN 2278-2540,

Volume 13, Issue 9, pp.161-173.

27. Gilbert, C. & Gilbert, M.A. (2024i). Unlocking Privacy in Blockchain:

Exploring Zero-Knowledge Proofs and Secure Multi-Party Computation

Techniques. Global Scientific Journal (ISSN 2320-9186) 12 (10), 1368-

1392.

28. Gilbert, C. & Gilbert, M.A. (2024j). The Role of Artificial Intelligence

(AI) in Combatting Deepfakes and Digital Misinformation.International

Research Journal of Advanced Engineering and Science (ISSN: 2455-

9024), Volume 9, Issue 4, pp. 170-181.

29. Gilbert, C. & Gilbert, M.A.(2024k). AI-Driven Threat Detection in the

Internet of Things (IoT), Exploring Opportunities and Vulnerabilities.

International Journal of Research Publication and Reviews, Vol 5, no 11,

pp 219-236.

30. Gilbert, C., & Gilbert, M. A. (2024l). The security implications of

artificial intelligence (AI)-powered autonomous weapons: Policy

recommendations for international regulation. International Research

Journal of Advanced Engineering and Science, 9(4), 205–219.

31. Gilbert, C., & Gilbert, M. A. (2024m). The role of quantum

cryptography in enhancing cybersecurity. International Journal of

Research Publication and Reviews, 5(11), 889–907.

https://www.ijrpr.com

32. Gilbert, C., & Gilbert, M. A. (2024n). Bridging the gap: Evaluating

Liberia's cybercrime legislation against international standards.

International Journal of Research and Innovation in Applied Science

(IJRIAS), 9(10), 131–137.

https://doi.org/10.51584/IJRIAS.2024.910013

33. Gilbert, C., & Gilbert, M. A. (2024o). The Effectiveness of

Homomorphic Encryption in Protecting Data Privacy. International

Journal of Research Publication and Reviews, 5(11), 3235-3256.

https://www.ijrpr.com.

34. Gilbert, C., & Gilbert, M. A. (2024p). Cryptographic Foundations And

Cybersecurity Implications Of Blockchain Technology.Global Scientific

Journals, ISSN 2320-9186, 12(11),464-487.

35. Gilbert, C., & Gilbert, M. A. (2024q). Advancing privacy standards

through education: The role of academic initiatives in enhancing privacy

within Cardano's blockchain ecosystem. International Research Journal

of Advanced Engineering and Science, 9(4), 238–251.

36. Gilbert, C., & Gilbert, M. A. (2024r). Leveraging artificial intelligence

(AI) by a strategic defense against deepfakes and digital misinformation.

International Journal of Scientific Research and Modern Technology,

3(11). https://doi.org/10.38124/ijsrmt.v3i11.76

37. Gilbert, C., & Gilbert, M. A. (2024s). Evaluation of the efficiency of

advanced number generators in cryptographic systems using a

comparative approach. International Journal of Scientific Research and

Modern Technology, 3(11). https://doi.org/10.38124/ijsrmt.v3i11.77

38. Gilbert, C., & Gilbert, M. A. (2024t). Cybersecurity risk management

frameworks for critical infrastructure protection. International Journal of

Research Publication and Reviews, 5(12), 507–533.

https://www.ijrpr.com/

39. Gilbert, C., & Gilbert, M. A. (2024u). Organizational and leadership

aspects of cybersecurity governance. International Journal of Research

Publication and Reviews, 5(12), 1174–1191. Retrieved from

www.ijrpr.com

40. Gilbert, C., & Gilbert, M. A. (2024v). The development and evolution of

cryptographic algorithms in response to cyber threats. International

Journal of Research Publication and Reviews, 5(12), 1149–1173.

Retrieved from www.ijrpr.com

41. Gilbert, C., & Gilbert, M. A. (2024w). Privacy-preserving data mining

and analytics in big data environments. Global Scientific Journal,

12(12). Retrieved from www.globalscientificjournal.com

42. Gilbert, C., & Gilbert, M. A. (2024x). Investigating the challenges and

solutions in cybersecurity using quantum computing and cryptography.

International Research Journal of Advanced Engineering and Science,

9(4), 291–315.

43. Gilbert, C., & Gilbert, M. A. (2024y). The integration of blockchain

technology into database management systems for enhanced security

and transparency. International Research Journal of Advanced

Engineering and Science, 9(4), 316–334.

44. Gilbert, C., & Gilbert, M. A. (2025a). Artificial intelligence (AI) and

machine learning (ML) for predictive cyber threat intelligence (CTI).

International Journal of Research Publication and Reviews, 6(3), 584–

617. http://www.ijrpr.com

45. Gilbert, C., & Gilbert, M. A. (2025b). Continuous user authentication on

mobile devices. International Research Journal of Advanced

Engineering and Science, 10(1), 158–173.

46. Gilbert, C., & Gilbert, M. A. (2025c). Patterns and vulnerabilities of

cryptocurrency-related cybercrimes. Global Scientific Journal, 13(3),

1950-1981. https://www.globalscientificjournal.com

47. Gilbert, C., & Gilbert, M. A. (2025d). Data encryption algorithms and

risk management. International Journal of Latest Technology in

Engineering, Management & Applied Science (IJLTEMAS), 14(3),

479–497. https://doi.org/10.51583/IJLTEMAS.2025.140300054

48. Gilbert, C., Gilbert, M. A., Dorgbefu, M., Leakpor, D. J., Gaylah, K. D.,

& Adetunde, I. A. (2025). Enhancing detection and response using

artificial intelligence in cybersecurity. International Journal of

Multidisciplinary Research and Publications (IJMRAP), 7(10), 87-104.

49. Gilbert, C., Gilbert, M. A., & Dorgbefu Jnr, M. (2025a). Secure data

management in cloud environments. International Journal of Research

https://doi.org/10.51583/IJLTEMAS.2024.130816
https://www.jetir.org/papers/JETIR2410134.pdf
https://www.researchgate.net/publication/384932828_Future_Privacy_Challenges_Predicting_the_Agenda_of_Webmasters_Regarding_Cookie_Management_and_Its_Implications_for_User_Privacy?_sg%5b0%5d=Cyx2BmYubV37U1mt50Qp46fGvxjJXsj-7TzEW4ME0Bh2bN8wScl_DEWV6cuZqevNnTGScYxG6Jocx_PLD57_RvvCGnLOpXfGv8lJnbty.tWXGVl5bggYacsOo7pjyHOeZVnyDjJe8dsUMl8-y4dgUdmFuAdCKwa1mpyQigb1kb2Q_vPLQlMtPgEbl3KtSVw&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
https://www.researchgate.net/publication/384932828_Future_Privacy_Challenges_Predicting_the_Agenda_of_Webmasters_Regarding_Cookie_Management_and_Its_Implications_for_User_Privacy?_sg%5b0%5d=Cyx2BmYubV37U1mt50Qp46fGvxjJXsj-7TzEW4ME0Bh2bN8wScl_DEWV6cuZqevNnTGScYxG6Jocx_PLD57_RvvCGnLOpXfGv8lJnbty.tWXGVl5bggYacsOo7pjyHOeZVnyDjJe8dsUMl8-y4dgUdmFuAdCKwa1mpyQigb1kb2Q_vPLQlMtPgEbl3KtSVw&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
https://www.researchgate.net/publication/384932828_Future_Privacy_Challenges_Predicting_the_Agenda_of_Webmasters_Regarding_Cookie_Management_and_Its_Implications_for_User_Privacy?_sg%5b0%5d=Cyx2BmYubV37U1mt50Qp46fGvxjJXsj-7TzEW4ME0Bh2bN8wScl_DEWV6cuZqevNnTGScYxG6Jocx_PLD57_RvvCGnLOpXfGv8lJnbty.tWXGVl5bggYacsOo7pjyHOeZVnyDjJe8dsUMl8-y4dgUdmFuAdCKwa1mpyQigb1kb2Q_vPLQlMtPgEbl3KtSVw&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
https://doi.org/10.38124/ijsrmt.v3i10.54
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:aqlVkmm33-oC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:aqlVkmm33-oC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:aqlVkmm33-oC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:4DMP91E08xMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:4DMP91E08xMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qK6BQOwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=qK6BQOwAAAAJ:4DMP91E08xMC
https://www.ijrpr.com/
https://doi.org/10.51584/IJRIAS.2024.910013
https://www.ijrpr.com/
https://doi.org/10.38124/ijsrmt.v3i11.76
https://doi.org/10.38124/ijsrmt.v3i11.77
https://www.ijrpr.com/
http://www.ijrpr.com/
http://www.ijrpr.com/
http://www.globalscientificjournal.com/
http://www.ijrpr.com/
https://www.globalscientificjournal.com/
https://doi.org/10.51583/IJLTEMAS.2025.140300054

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

389

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

and Innovation in Applied Science (IJRIAS), 10(4), 25–56.

https://doi.org/10.51584/IJRIAS.2025.10040003

50. Gilbert, C., Gilbert, M. A., & Dorgbefu Jnr, M. (2025b). Detection and

Response Strategies for Advanced Persistent Threats (APTs).

International Journal of Scientific Research and Modern Technology,

4(4), 5–21. https://doi.org/10.38124/ijsrmt.v4i4.367

51. Gilbert, C., & Gilbert, M. A. (2025e). Impact of General Data Protection

Regulation (GDPR) on data breach response strategies (DBRS).

International Journal of Research and Innovation in Social Science

(IJRISS), 9(14), 760–784.

https://doi.org/10.47772/IJRISS.2025.914MG0061

52. Gilbert, C., & Gilbert, M. A. (2025f). Algorithmic approaches to

intrusion detection systems (IDS) using graph theory. International
Journal of Multidisciplinary Research and Publications (IJMRAP), 7(11),

109–125.

53. Gilbert, C., & Gilbert, M. A. (2025g). Homomorphic encryption

algorithms for secure data computation. International Research Journal
of Advanced Engineering and Science, 10(2), 148–162.

54. Gilbert, M.A., Oluwatosin, S. A., & Gilbert, C. (2024). An investigation

into the types of role-based relationships that exist between lecturers and

students in universities across southwestern nigeria: a sociocultural and

institutional analysis. Global Scientific Journal, ISSN 2320-9186,

Volume 12, Issue 10, pp. 263-280.

55. Gilbert, M.A., Auodo, A. & Gilbert, C. (2024). Analyzing Occupational

Stress in Academic Personnel through the Framework of Maslow’s

Hierarchy of Needs. International Journal of Research Publication and

Reviews, Vol 5, no 11, pp 620-630.

56. Gupta, G. (2015). What is Birthday attack?? s Interneta. Retrieved from

https://www.researchgate.net/publication/271704029_What_is_Birthday

_attack

57. Gupta, R., Gupta, P., & Singh, J. (2019). Security and cryptography. In

Software Engineering for Embedded Systems (pp. 501–547). Newnes.

58. Gutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and

techniques for analysis and forecast of road accidents: A review. Journal

of Traffic and Transportation Engineering (English Edition), 7(4), 432–

446.

59. Hamadani, A., Ganai, N. A., & Bashir, J. (2023). Artificial neural

networks for data mining in animal sciences. Bulletin of the National

Research Centre, 47(1), 68.

60. Hamadouche, M. (2024). Securing biometric systems by using

perceptual hashing (Doctoral dissertation).

61. Harfoushi, O., & Obiedat, R. (2018). Security in cloud computing using

hash algorithm: A neural cloud data security model. Canadian Center of

Science and Education, 12(6).

62. Hasan, M. (2024). A study on the integration of blockchain technology

for enhancing data integrity in cyber defense systems. Journal of Digital

Transformation, Cyber Resilience, and Infrastructure Security, 8(12),

21–30.

63. He, Y., Zhou, Z., Pan, Y., Chong, F., Wu, B., Xiao, K., & Li, H. (2024).

Review of data security within energy blockchain: A comprehensive

analysis of storage, management, and utilization. High-Confidence

Computing, Article 100233.

64. Holmgren, J., & Lombardi, A. (2018, October). Cryptographic hashing

from strong one-way functions (or: One-way product functions and their

applications). In 2018 IEEE 59th Annual Symposium on Foundations of

Computer Science (FOCS) (pp. 850–858). IEEE.

65. Imam, R., Areeb, Q. M., Alturki, A., & Anwer, F. (2021). Systematic

and critical review of RSA based public key cryptographic schemes:

Past and present status. IEEE Access, 9, 155949–155976.

66. Jager, T., Kurek, R., & Niehues, D. (2021, May). Efficient adaptively-

secure IB-KEMs and VRFs via near-collision resistance. In IACR

International Conference on Public-Key Cryptography (pp. 596–626).

Springer.

67. Jain, A. K., Ross, A. A., Nandakumar, K., & Swearingen, T. (2024).

Security of biometric systems. In Introduction to Biometrics (pp. 343–

397). Springer.

68. Joshua, T. (2023). A secure model for student results verification using

salted hash functions.

69. Kadioglu, M. A., & Alatas, B. (2023). Enhancing call center efficiency:

Data driven workload prediction and workforce optimization. The

Eurasia Proceedings of Science Technology Engineering and

Mathematics, 24, 96–100.

70. Kapoor, B., Pandya, P., & Sherif, J. S. (2011). Cryptography: A security

pillar of privacy, integrity and authenticity of data communication.

Kybernetes, 40(9/10), 1422–1439.

71. Kaur, R., & Sahu, C. (2025). Cryptography in industry: Safeguarding

digital assets and transactions. In Next Generation Mechanisms for Data

Encryption (pp. 146–163). CRC Press.

72. Kishore, N., & Raina, P. (2019). Parallel cryptographic hashing:

Developments in the last 25 years. Cryptologia, 43(6), 504–535.

73. Kuznetsov, O., Kuznetsova, Y., Smirnov, O., Kostenko, O., & Zvieriev,

V. (2023). Evaluating hashing algorithms in the age of ASIC resistance.

In ITTAP (pp. 208–220).

74. Kuznetsov, O., Rusnak, A., Yezhov, A., Kuznetsova, K., Kanonik, D., &

Domin, O. (2024). Evaluating the security of Merkle trees: An analysis

of data falsification probabilities. Cryptography, 8(3), 33.

75. Kwame, A. E., Martey, E. M., & Chris, A. G. (2017). Qualitative

assessment of compiled, interpreted and hybrid programming languages.

Communications on Applied Electronics, 7(7), 8-13.

76. Leurent, G. (2024). Symmetric cryptanalysis beyond primitives

(Doctoral dissertation, Sorbonne Université).

77. Li, S., Xu, C., Zhang, Y., Du, Y., & Chen, K. (2022). Blockchain-based

transparent integrity auditing and encrypted deduplication for cloud

storage. IEEE Transactions on Services Computing, 16(1), 134–146.

78. Li, Y. (2024). A novel approach to secure hashing: Implementing

chaotic hash functions for enhanced security.

79. Martínez, S., Gérard, S., & Cabot, J. (2022). Efficient model similarity

estimation with robust hashing. Software and Systems Modeling, 21(1),

337–361.

80. Martins, I., Resende, J. S., Sousa, P. R., Silva, S., Antunes, L., & Gama,

J. (2022). Host-based IDS: A review and open issues of an anomaly

detection system in IoT. Future Generation Computer Systems, 133, 95–

113.

81. Mittelbach, A., & Fischlin, M. (2021). The theory of hash functions and

random oracles. In An Approach to Modern Cryptography. Springer.

82. Mohamed, E. (2025). Future trends and real-world applications in

database encryption. International Journal of Electrical Engineering and

Sustainable Development, 28–39.

83. Nannipieri, P., Bertolucci, M., Baldanzi, L., Crocetti, L., Di Matteo, S.,

Falaschi, F., … & Saponara, S. (2021). SHA-2 and SHA-3 accelerator

design in a 7 nm technology within the European Processor Initiative.

Microprocessors and Microsystems, 87, 103444.

84. Nadji, B. (2024). Data security, integrity, and protection. In Data,

Security, and Trust in Smart Cities (pp. 59–83). Springer Nature

Switzerland.

85. Opoku-Mensah, E., Abilimi, C. A., & Boateng, F. O. (2013).

Comparative analysis of efficiency of fibonacci random number

generator algorithm and gaussian Random Number Generator Algorithm

in a cryptographic system. Comput. Eng. Intell. Syst, 4, 50-57.

86. Opoku-Mensah, E., Abilimi, A. C., & Amoako, L. (2013). The

Imperative Information Security Management System Measures In the

Public Sectors of Ghana. A Case Study of the Ghana Audit Service.

International Journal on Computer Science and Engineering (IJCSE),

760-769.

87. O’Reilly, P. D., Rigopoulos, K. G., Witte, G. A., & Feldman, L. (2018).

2017 NIST/ITL cybersecurity program: Annual report.

88. Panda, S. K., Mishra, V., Dash, S. P., & Pani, A. K. (Eds.). (2023).

Recent advances in blockchain technology: Real-world applications.

89. Plummer, D. E. (2019). Bitcoin, blockchain technology, and secure hash

algorithms (Master’s thesis, Howard University).

90. Preneel, B. (2025). Hash functions. In Encyclopedia of Cryptography,

Security and Privacy (pp. 1096–1109). Springer Nature Switzerland.

91. Robert, W., Denis, A., Thomas, A., Samuel, A., Kabiito, S. P., Morish,

Z., & Ali, G. (2024). A comprehensive review on cryptographic

techniques for securing Internet of Medical Things: A state-of-the-art,

applications, security attacks, mitigation measures, and future research

direction. Mesopotamian Journal of Artificial Intelligence in Healthcare,

2024, 135–169.

92. Saeed, M. M., & Alsharidah, M. (2024). Security, privacy, and

robustness for trustworthy AI systems: A review. Computers and

Electrical Engineering, 119, 109643.

93. Sadeghi-Nasab, A., & Rafe, V. (2023). A comprehensive review of the

security flaws of hashing algorithms. Journal of Computer Virology and

Hacking Techniques, 19(2), 287–302.

https://doi.org/10.51584/IJRIAS.2025.10040003
https://doi.org/10.38124/ijsrmt.v4i4.367
https://doi.org/10.47772/IJRISS.2025.914MG0061
https://www.researchgate.net/publication/271704029_What_is_Birthday_attack
https://www.researchgate.net/publication/271704029_What_is_Birthday_attack

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

390

Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025.

94. Sivasubramanian, K. S. (2020). A comparative analysis of post-quantum

hash-based signature algorithm (Master’s thesis, University of Twente).

95. Shah, N. H. M., Asmawi, A., Yasin, S. M., Narendra, B. P., Khan, A. K.,

Sarkar, A., … & Yakymovych, T. (2025). Improving collection of data

type evidence and the integrity of evidence collected using SHA-256

hashing algorithm for web browsers. Journal of Theoretical and Applied

Information Technology, 102(2).

96. Shen, J., Chen, X., Huang, X., & Xiang, Y. (2023). Public proofs of data

replication and retrievability with user-friendly replication. IEEE

Transactions on Dependable and Secure Computing, 21(4), 2057–2067.

97. Sinha, M. K., & Prayesi, K. P. (2025). Hash functions and message

digest. In Next Generation Mechanisms for Data Encryption (pp. 47–

63). CRC Press.

98. Stevens, M. (2013, August). Counter-cryptanalysis. In Annual

Cryptology Conference (pp. 129–146). Springer.

99. Tayouri, D., Hassidim, S., Smirnov, A., & Shabtai, A. (2022). White

paper—Cybersecurity in agile cloud computing—Cybersecurity

guidelines for cloud access. Cybersecurity in Agile Cloud Computing—

Cybersecurity Guidelines for Cloud Access, 1–36.

100. Yeboah, T., Opoku-Mensah, E., & Abilimi, C.A. (2013a). A Proposed

Multiple Scan Biometric-Based Registration System for Ghana Electoral

Commission. Journal of Engineering, Computers & Applied Sciences

(JEC&AS), 2(7).

101. Yeboah, D. T., Odabi, I., & Abilimi Odabi, M. C. A. A. (2016).

Utilizing divisible load scheduling theorem in round robin algorithm for

load balancing in cloud environment.

102. Yeboah, T., Opoku-Mensah, E., & Abilimi, C. A. (2013b). Automatic

Biometric Student Attendance System: A Case Study Christian Service

University College. Journal of Engineering Computers & Applied

Sciences, 2(6), 117-121.

103. Yeboah T. & Abilimi C.A. (2013). Using Adobe Captivate to creative

Adaptive Learning Environment to address individual learning styles: A

Case study Christian Service University, International Journal of

Engineering Research & Technology (IJERT), ISSN: 2278-

0181,www.ijert.org, “2(11).

