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Abstract—In an era marked by the exponential growth of digital data 

and the widespread adoption of cloud-based storage, ensuring the 

authenticity and integrity of digital content has become an urgent and 

complex challenge. This study investigates the robustness, efficiency, 
and applicability of secure hashing algorithms, particularly SHA-

family variants in enhancing data integrity verification mechanisms 

across diverse computational environments. The research critically 

evaluates the security assumptions underpinning Proofs of 
Retrievability (PoR) schemes, revealing vulnerabilities in legacy 

protocols such as the Jules–Kaliski construction and its RSA-SHA 

derivatives when subjected to modern attack models. Through a 

hybrid methodology combining theoretical analysis, cryptographic 
simulation, real-world testing, and FPGA-based hardware 

validation, the study explores the collision resistance, pre-image 

resistance, and implementation efficiency of SHA-1, SHA-256, SHA-

512, and SHA-3 algorithms. Experimental results demonstrate the 
superior performance of SHA-256 in balancing cryptographic 

strength with computational feasibility, while highlighting the 

potential of permutation-based SHA-3 candidates in resource-

constrained environments. Further, the integration of integrity 
mechanisms into digital file formats, coupled with novel techniques 

such as substring index tables and block power indexing, provides a 

lightweight yet effective framework for tamper detection. Real-world 

case studies, alongside performance benchmarks, affirm the 
practicality of the proposed approaches. The study concludes with 

strategic recommendations aimed at enhancing the resilience of 

hashing algorithms in light of evolving security threats, and suggests 

future research directions including post-quantum cryptographic 
resilience and hardware-accelerated implementations. 

 

Keywords— Secure Hashing Algorithms, SHA-256, SHA-3, Data 

Integrity, Proofs of Retrievability (PoR), Collision Resistance, 
Cryptographic Verification, File Format Security, FPGA 

Acceleration, Substring Indexing, Cloud Storage, Post-Quantum 

Cryptography. 

I. INTRODUCTION  

Ensuring the security and correctness of Proofs of 

Retrievability (PoR) schemes requires assumptions that are 

both collision-free and computationally efficient (Li et al., 

2022; Opoku-Mensah, Abilimi & Amoako, 2013). The Jules–

Kaliski (J.&K.) protocol, a landmark PoR construction, relies 

on a modified RSA assumption to guarantee its integrity 

checks (Zachos et al., 2023). However, despite this reliance, 

no fully efficient, collision-resistant assumption has been 

formally established to underpin the protocol’s security (Shen 

et al., 2023; Yeboah, Opoku-Mensah & Abilimi, 2013a). 

Although Hamadani, Ganai & Bashir (2023), extended the 

J.&K. protocol, reducing client-side computation, they 

similarly did not introduce a new, provably secure assumption. 

Consequently, the search for a robust, collision-resistant 

foundation for PoR schemes remains open (Jager, Kurek & 

Niehues, 2021). 

In this paper, we demonstrate that both the original J.&K. 

protocol and its RSA-and-SHA-based variants are vulnerable 

when evaluated under contemporary, stronger security models 

that emphasize unforgeability and data integrity. By refining 

the classical RSA assumption with advanced analytical tools, 

we uncover critical weaknesses in these constructions (Imam 

et al., 2021; Yeboah, Opoku-Mensah & Abilimi, 2013b). Our 

results show that, without a stronger underlying assumption, 

these protocols cannot guarantee collision resistance or 

integrity against modern adversaries. 

The rapid adoption of third-party cloud storage has 

heightened the importance of verifying data integrity: clients 

must be able to detect any unauthorized modification of their 

outsourced data. Traditional integrity verification mechanisms, 

built on client-server architectures, impose substantial 

computational costs on one or both parties. To address these 

inefficiencies, Jules and Kaliski introduced a PoR scheme that 

balances security with performance. According to Kadioglu & 

Alatas (2023), further optimized this approach, significantly 

reducing the client’s workload. Despite these improvements, 

both protocols continue to depend fundamentally on RSA and 

SHA-based integrity checks, which we show to be insufficient 

under rigorous security scrutiny. 

1.1 Background and Significance 

Secure hash functions have long served as the cornerstone 

of data integrity verification. Ranging from simple checksums 

to sophisticated constructions based on cryptographic 

primitives, these functions map arbitrary-length inputs to 

fixed-size digests (Youvan, 2024; Gilbert, Gilbert & Dorgbefu 

Jnr, 2025a). By storing the digest in a trusted, tamper-resistant 

location, one can later recompute the hash of retrieved data 

and compare it against the stored value; equality implies that 

the data has not been altered. This mechanism parallels the use 

of Merkle trees, where a mismatch at the root hash 

unequivocally signals tampering in one or more leaf nodes. 

The study of secure database systems lies at the 

intersection of cryptography, information security, and 

database management. From a cryptographic standpoint, these 

systems leverage hash functions, digital signatures, and 

encryption to enforce data integrity and confidentiality. From 

an information-science perspective, they facilitate the storage 

and retrieval of data whose informational value must be 

preserved and validated. Finally, at the database-management 
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level, secure systems must manage resources disk blocks, 

files, rows; under varying isolation levels to ensure that 

security guarantees hold across all layers of the system 

architecture (Chandramouli & Pinhas, 2020; Opoku-Mensah, 

Abilimi & Boateng, 2013). Understanding these 

interdependencies is crucial for designing PoR schemes that 

are both efficient and provably secure. 

1.2. Research Objectives 

The overarching aim of this study is to enhance the 

security of digital file formats, thereby strengthening the 

integrity assurances associated with digital objects of both 

general and cultural significance. File formats establish the 

rules governing the creation, storage, and, where applicable, 

the encapsulation of descriptive metadata. They are designed 

to be hardware-agnostic and resilient to technological 

evolution. To achieve this aim, the primary research objectives 

are as follows: 

I. Evaluate various Secure Hash Algorithm (SHA) variants to 

determine their efficacy in detecting file modifications and 

preserving the verifiable “fingerprint” of a digital object. 

II. Design and implement mechanisms for embedding 

integrity checks within selected file formats, ensuring that 

any unauthorized alteration can be reliably detected. 

III. Develop realistic test environments and datasets that 

mirror practical use cases, thereby generating 

representative inputs for integrity validation. 

IV. Conduct comprehensive validation experiments to measure 

the robustness, performance, and 

false-positive/false-negative rates of the integrity-enhanced 

file formats under various attack and corruption scenarios. 

1.3. Research Questions 

To guide this investigation, the following research 

questions have been formulated: 

i. Which SHA-family algorithm offers the optimal balance 

between computational efficiency and tamper-detection 

sensitivity when applied to common digital file formats? 

ii. How can integrity-checking mechanisms be seamlessly 

embedded within existing file formats without 

compromising compatibility or performance? 

iii. In what ways do different types and magnitudes of data 

perturbations (bit flips, metadata modifications, structural 

reordering) affect the output of SHA-based integrity 

indicators? 

iv. What visualization techniques most effectively reveal 

patterns of integrity indicator deviations across perturbed 

datasets? 

v. Can residual cryptographic signatures be reliably traced 

back to specific tampering events, thereby enabling 

fine-grained localization of unauthorized changes within a 

file? 

1.4. Research Methodology 

To investigate the robustness and applicability of secure 

hashing algorithms for data integrity verification, this study 

adopted a hybrid research methodology that combines 

theoretical modeling, algorithmic simulation, practical 

experimentation, and real-world validation (Chen, Gu & Yan, 

2023; Yeboah & Abilimi, 2013). 

The research began with an in-depth conceptual and 

theoretical analysis of well-established hash functions, 

particularly the SHA family (SHA-1, SHA-256, SHA-512, 

SHA-3), including legacy functions like MD4 and MD5. 

Emphasis was placed on understanding the cryptographic 

foundations of these algorithms, focusing on key properties 

such as collision resistance, pre-image resistance, and 

avalanche effects (Wang & Tabassum, 2024; Yeboah, Odabi 

& Abilimi Odabi, 2016). Foundational constructs such as 

Merkle–Damgård and sponge constructions were also 

examined to frame the operational principles of various hash 

functions. This theoretical grounding enabled the 

identification of vulnerabilities and limitations in widely used 

schemes, particularly in the context of Proofs of Retrievability 

(PoR) protocols. 

To complement this theoretical work, a set of controlled 

simulations and cryptographic analyses were conducted. These 

involved simulating a variety of known attack models, 

including collision attacks (like the birthday attack), pre-image 

attacks, and length extension attacks. The simulations were 

designed to test the resilience of different hash functions under 

adversarial conditions using both classical brute-force 

approaches and optimized time/memory trade-off techniques. 

A major aspect of the methodology focused on empirical 

performance evaluation. Several SHA variants were embedded 

into digital file formats to test how well they performed in 

detecting unauthorized alterations under real-world conditions. 

To ensure the results were meaningful and practical, the 

experiments were carried out in simulated environments that 

closely mirrored real-world data storage and transmission 

scenarios, such as cloud services and digital archives. File 

tampering was introduced through bit flips, metadata changes, 

and structural reordering, and the impact on the integrity 

indicators was analyzed. 

To further verify the feasibility of the proposed integrity 

mechanisms, the study included real-world case 

implementations. These case studies evaluated how existing 

data integrity verification systems, both commercial and 

freeware, leverage hash-based validation. The findings were 

compared with the performance of the proposed solutions, 

particularly in terms of their ability to detect tampering and 

localize file alterations with precision. 

In addition, the study integrated hardware-based 

experimentation using FPGA simulations. Cryptographic 

coprocessors were prototyped to evaluate how SHA 

algorithms perform in hardware-constrained environments. 

This involved measuring computational efficiency, energy 

consumption, and suitability for embedded systems. The SHA-

3 variants, in particular, were tested using multiple 

permutation-based techniques to assess both software and 

hardware performance. 

Finally, the robustness of the algorithms was assessed 

through heuristic modeling and statistical analysis. Techniques 

such as probability distribution modeling (based on the 

birthday paradox) were used to estimate the likelihood of 

collisions. Visualization tools were also employed to map 
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integrity deviations across different test cases, revealing 

patterns in hash responses to data corruption. 

Overall, this research methodology offered a 

comprehensive framework; blending theory, simulation, real-

world application, and hardware testing; to evaluate the 

effectiveness and security of modern hashing algorithms in 

ensuring data integrity across a range of environments and use 

cases. 

 
Figure 1: A structured research methodology 

 

The diagram reflects a rigorous, iterative approach to 

research, emphasizing validation at multiple stages—

theoretical, simulated, experimental, and real-world. The 

inclusion of a data integrity checkpoint aligns with best 

practices in scientific inquiry, ensuring that conclusions are 

based on robust, reliable data. The loop back to theoretical 

modeling if data integrity fails underscores the importance of 

adaptability in research, a principle often seen in disciplines 

requiring high precision, such as data science, engineering, or 

clinical research. This process ensures that the study’s 

outcomes are both theoretically sound and practically viable, 

contributing to the advancement of knowledge with 

credibility. 

II. FUNDAMENTALS OF CRYPTOGRAPHIC HASHING 

ALGORITHMS 

According to Anwar, Apriani & Adianita (2021), 

Cryptographic hashing algorithms play a central role in 

ensuring data integrity and authentication. By transforming an 

arbitrarily long input message into a fixed‐length digest, they 

enable recipients to verify that data have not been altered in 

transit. A secure hash function exhibits several key properties: 

• Determinism and Uniformity: Identical input consistently 

generates the same output, and outputs are distributed 

evenly throughout the hash space. 

• Avalanche Effect: A change of just one bit in the input 

results in a vastly different digest. 

• Preimage Resistance: When provided with a digest h, it is 

computationally impractical to identify any input m such 

that Hash(m) = h. 

• Second Preimage Resistance: For a specified input m₁, it is 

impractical to discover a different input m₂ that produces 

the same digest. 

• Collision Resistance: It is impractical to locate any two 

distinct inputs that hash to an identical value. 

Also, Xu (2023), in his article stated that, Hash values are 

typically rendered as large integers or expressed in 

hexadecimal. In practice, data senders compute and transmit 

both the original data and its hash; recipients then recompute 

the hash on the received data and compare it to the transmitted 

digest. A match confirms that the data arrived unaltered. 

Standards bodies such as NIST publish specifications for 

secure hash functions (SHA-2, SHA-3), and most international 

and national protocols reference these guidelines when 

defining hash‐based interfaces and formats. 

 

 
Figure 2: Overview of cryptographic hashing algorithms 

 

The diagram presents a comprehensive overview of 

cryptographic hashing algorithms, highlighting their purpose, 

key cryptographic properties, value representation, operational 

process, and alignment with global standards and protocols. 
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2.1 Definition and Security Objectives 

A cryptographic hash function, denoted H, accepts an 

input message M of arbitrary length and produces a fixed‐size 

output h = H(M) (Tiwari & Asawa, 2010; Gilbert & Gilbert, 

2025e)). Its primary purpose is to enable efficient integrity 

checks without revealing information about M itself. Key 

security objectives include: 

i. Preimage Resistance 

a. First Preimage Resistance: Given a digest h, finding 

any M such that H(M) = h should require 

computational effort on the order of 2ⁿ, where n is the 

digest length in bits. 

b. Second Preimage Resistance: Given an input M₁, 

finding a distinct M₂ with H(M₂) = H(M₁) should also 

require ≈2ⁿ operations. 

ii. Collision Resistance: The best generic attack to find 

any collision for an n-bit digest runs in approximately 

2ⁿ⁄² steps (the “birthday bound”). 

Different applications may impose varying levels of these 

properties. For example, blockchain systems or 

file‐deduplication services may tolerate weaker first‐preimage 

resistance, whereas digital signatures demand full collision 

and preimage resistance. Understanding the computational 

cost for an adversary to break each property allows 

organizations to select hash functions and output lengths that 

minimize security risks. 

 
Figure 3: Security objectives of cryptographic hash functions 

 

The diagram provides a structured visualization of the core 

definition and security objectives associated with 

cryptographic hash functions, a fundamental component in 

modern cryptographic systems. At the top level, the diagram 

defines a cryptographic hash function H as a mechanism that 

accepts an input message M of arbitrary length and produces a 

fixed-size digest h=H(M). This transformation is central to 

many data integrity and authentication protocols, where the 

objective is to ensure that data has not been altered, either 

maliciously or accidentally. 

2.2 Categories and Output Lengths 

Cryptographic hash functions are often classified by two 

principal parameters: 

I. Digest Length 

a. Common output sizes include 128, 160, 224, 256, 

384, and 512 bits. 

b. A longer digest increases the difficulty of brute‐force 

and collision attacks, at the expense of greater storage 

and transmission overhead. 

II. Padding and Merkle–Damgård vs. Sponge 

Construction 

a. Traditional designs (SHA-2) use the Merkle–

Damgård construction with specific padding rules. 

b. Newer families (SHA-3) employ sponge 

constructions, which offer flexibility in output length 

and resistance to length‐extension attacks (Sadeghi-

Nasab & Rafe, 2023; Sinha & Prayesi, 2025; Gilbert 

& Gilbert, 2025f). 

Selecting a suitable hash function requires finding a 

balance between security needs (resistance to preimage and 

collision attacks) and performance as well as implementation 

limitations. For high‐security applications such as digital 

signatures or certificate authorities a 256‐bit or longer digest 

(SHA-256, SHA-384, SHA-512) is standard. In contrast, 

legacy or resource‐constrained systems may still use shorter 

digests, provided their threat models permit the reduced 

security margin. 

 
Figure 4: Categories and output lengths of cryptographic hash functions 

 

This diagram skillfully captures the technical 

classification, security rationale, and practical deployment 

strategies of cryptographic hash functions, demonstrating how 

digest length and internal construction must be matched 

thoughtfully to an application’s security requirements and 

operational environment. 

III. IMPORTANCE OF DATA INTEGRITY VERIFICATION  

Modern large‐scale storage infrastructures offer 

tremendous economies of scale, yet without robust integrity 

checks, users and applications remain reluctant to entrust 

critical data to these platforms (Ahanger et al., 2024; Gilbert 

& Gilbert, 2025g). Although the research community has 

proposed numerous elegant algorithms to address integrity 

verification, real‐world deployments often default to siloed 

storage or underutilized bespoke systems. To unlock the full 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 
 

 

377 

 
Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of 

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025. 

potential of cost-effective, distributed storage services, we 

must adopt architectures that allow diverse applications to 

store, retrieve, and repair data with provable assurances of 

correctness. 

As these storage systems evolve into foundational 

infrastructure, it is no longer sufficient to cite high availability 

metrics or low mean‐time-to-failure statistics. Data managers 

and end users require cryptographic guarantees that the bytes 

delivered are identical to those originally written—and, if 

corruption occurs, that any automated repairs restore the 

authentic content (Kapoor, Pandya & Sherif, 2011; 

Christopher, 2013). Mechanisms such as copy-on-write with 

Merkle-tree–based self-verification have emerged as powerful 

enablers of built-in integrity management. Widely used in 

content-addressable storage, these techniques automatically 

detect and localize corruption, triggering repairs that can be 

independently validated (Kuznetsov et al., 2024). 

Beyond storage, integrity verification underpins a variety 

of domains database consistency checks, distributed ledger 

systems, digital forensics, revocation lists, and more. The 

challenge lies in exposing the storage layer’s 

integrity-checking and repair services to non-storage 

applications in a seamless, standardized manner. Doing so will 

extend the trust guarantees of modern storage stacks into 

broader contexts, enabling novel applications that depend on 

verifiable data correctness (Ahanger et al., 2024; Nadji, 2024). 

This is summarized in Table 1. 

3.1 Role in Cybersecurity 

In cybersecurity, a “trusted environment” demands that all 

software components execute exactly as specified, free from 

unauthorized modifications or embedded malware (Tayouri et 

al., 2022; Gilbert, Gilbert & Dorgbefu Jnr, 2025b).  While it is 

impractical to defend every element of a dynamic IT 

infrastructure against all threats, enforcing integrity at key 

junctures, particularly within the software supply chain, 

substantially reduces risk. Secure development practices, 

rigorous testing, and continuous monitoring are essential, but 

they must be complemented by cryptographic provenance and 

integrity standards (Gupta, Gupta & Singh, 2019). 

Recent initiatives, such as NIST’s IT Provenance 

Challenge and the Defense Science Board’s Task Force on 

DoD Mission Assurance, advocate for integrating secure 

hashing and supply‐chain transparency into contractual 

requirements (Hasan, 2024). The rise of supply-chain 

malware—highlighted by high-profile incidents and FBI 

advisories—underscores the urgent need for systems that 

guarantee the authenticity of source code, binaries, and 

configuration data (O’Reilly et al., 2018). By embedding 

robust hash-based integrity checks throughout the 

development, distribution, and deployment pipeline, 

organizations can detect tampering early, contain 

compromises, and maintain cyber resilience against 

increasingly sophisticated attacks. 

 

TABLE 1: The Importance of Data Integrity Verification in Modern Systems 

Aspect Description 

Economies of Scale vs. Trust Large-scale storage systems offer cost advantages but lack of strong integrity checks, making users hesitant to trust them. 

Research vs. Reality 
Although elegant integrity algorithms exist, real-world deployments often rely on siloed or custom systems, limiting 

effectiveness. 

Need for Robust Architectures Distributed storage needs designs that allow storing, retrieving, and repairing data with provable correctness guarantees. 

Beyond Traditional Metrics Availability or mean-time-to-failure stats are insufficient; cryptographic proof of data correctness is essential. 

Mechanisms for Verification 
Techniques like copy-on-write with Merkle tree–based self-verification enable built-in integrity management and self-healing 

storage. 

Role of Content-Addressable 

Storage 
Automatically detects corruption, localizes it, and triggers independently verifiable repairs. 

Applications Beyond Storage Integrity verification supports database consistency checks, distributed ledgers, digital forensics, revocation lists, and more. 

Future Challenges and Vision 
Exposing storage-layer integrity services to non-storage applications in a standardized and seamless way will expand 

verifiable trust across systems. 

 
Figure 5: A framework for enforcing software integrity and supply chain security in cybersecurity environments 
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This diagram presents a comprehensive framework for 

ensuring a trusted cybersecurity environment through layered 

enforcement of software integrity and proactive supply chain 

security measures. It begins with the foundational requirement 

of Exact Software Execution, ensuring No Unauthorized 

Modifications and No Embedded Malware, which collectively 

form the basis of a Trusted Environment. 

IV. CRYPTOGRAPHIC SECURITY PROPERTIES OF HASHING 

ALGORITHMS 

Unlike encryption, which transforms data into an 

unreadable ciphertext recoverable only with a key, a 

cryptographic hash function deterministically maps an input of 

arbitrary length to a fixed‐length digest (Sadeghi-Nasab & 

Rafe, 2023). Its primary purpose is integrity verification: by 

recomputing the digest on received data and comparing it to 

the original, recipients can detect any modifications that 

occurred during transit. Hash‐based integrity checks are 

especially valuable for securing public file transfers over 

untrusted networks, since they require no secret key exchange 

and impose minimal computational overhead (Li, 2024). 

To be cryptographically secure, a hash function must 

satisfy three fundamental properties: 

i. Preimage Resistance: Given a target digest h, it must be 

computationally infeasible to find any input m such that 

H(m) = h. 

ii. Second Preimage Resistance: For a known input m₁, it 

must be infeasible to discover a different input m₂ ≠ m₁ 

with H(m₂) = H(m₁). 

iii. Collision Resistance: It must be infeasible to find any 

two distinct inputs m₁, m₂ such that H(m₁) = H(m₂). 

These properties ensure that each input maps to a unique 

or effectively unique digest, preventing an adversary from 

forging data that yields the same hash. In practice, hash 

outputs are published or transmitted alongside the data; upon 

receipt, the hash is recomputed and compared. Any 

discrepancy indicates tampering or corruption. 

While hash functions do not employ public‐key operations 

in the same manner as encryption or digital signatures, they 

may be combined with keyed constructs such as HMACs; to 

provide authentication. Nonetheless, the core security of a 

hash function rests on the infeasibility of reversing or colliding 

its fixed‐length outputs. Ensuring strong preimage and 

collision resistance is fundamental to the integrity assurances 

that contemporary cryptographic protocols and data-protection 

services rely on. 

 

 
Figure 6: Cryptographic hash functions 

 

This diagram offers a structured overview of the security 

foundations and practical uses of cryptographic hashing in 

cybersecurity. It begins by introducing the Cryptographic 

Security Properties of Hashing, where a Hash Function 

Overview leads to Integrity Verification, a process ensuring 

that data remains unaltered without requiring a secret key 

exchange. This lightweight assurance mechanism makes 

hashing especially valuable for open, untrusted environments. 

4.1 Key Principles of Message Digest Algorithms 

Message Digest Algorithm 5 (MD5), developed by RSA 

Data Security, Inc. in 1992, maps inputs of up to 2^64–1 bits 

to a fixed 128-bit digest (Bhatia, 2022). MD5 gained 

widespread adoption in digital signatures, public-key 

infrastructures, and proof-of-work systems, owing to its 

simplicity and performance. In practice, MD5 allows for data 

integrity verification by matching the digest generated by the 

sender with the one recalculated by the receiver. 

However, MD5’s security has been irrevocably 

compromised. In the article by Leurent (2024), demonstrated 

practical collision attacks against MD5, and subsequent 

research uncovered vulnerabilities to birthday attacks, 

chosen-prefix collisions, and other cryptanalytic techniques. 

As a result, MD5 is considered entirely broken: adversaries 

can generate distinct messages that share the same MD5 

digest, undermining any trust in its outputs. Consequently, 

both clients and servers must avoid MD5 for any 

security-critical application. 

In response to MD5’s weaknesses, researchers proposed 

MD6,a variant designed to enhance collision resistance—

though MD6 itself has not achieved widespread 

standardization. Earlier, RSA Laboratories introduced MD4 as 
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an experimental digest function; however, MD4 too was 

quickly shown to be insecure and is deprecated (Bhargavan & 

Leurent, 2016). 

The deprecation of MD5, MD4, and other early hash 

functions (SHA-0 and SHA-1) has led to the adoption of the 

SHA-2 family (SHA-224, SHA-256, SHA-384, SHA-512), 

standardized by NIST. SHA-2 algorithms offer substantially 

larger digest sizes and improved resistance to known 

cryptanalytic attacks. More recently, the SHA-3 family 

selected via an open competition and based on the Keccak 

sponge construction provides an alternative hashing paradigm 

with built-in defenses against length-extension and other 

vulnerabilities. Continued study of SHA-3 and its variants 

remains essential to identify any emergent weaknesses and to 

ensure long-term data integrity assurances (Stevens, 2013). 

 

 
Figure 7: Evolution and security trajectory of message digest algorithms 

 

This diagram traces the evolution, vulnerabilities, and 

modern alternatives to early Message Digest Algorithms. It 

begins with MD5, a 128-bit digest algorithm that gained 

extensive use in digital signatures and proof-of-work systems 

due to its speed and simplicity. However, its security was 

eventually compromised through collision attacks, leading to 

the conclusion that MD5 is considered broken and the 

recommendation to avoid MD5 in all security-critical 

applications. 

V. COMMON ATTACKS ON HASH FUNCTIONS 

The security of hash function becomes difficult to analyze 

only due to its one-way property. A one-way pre-image-

resistant hash function: The property F => G (given F(y) = y, 

predicting x such that F(x) = y is practically infeasible) is 

difficult to satisfy (Plummer, 2019). This feature, instead of 

being a liability, can actually provide computational security 

for many attached cryptosystems. The proposed random-

oracle model converts weak hash functions into strong 

cryptographically in the design and analysis phase. The hash 

functions of the random-oracle model actually implement a 

robustly OWP-en (one-way permutation easily to compute) 

function, and this difficult task can help us from being 

attacked (Sivasubramanian, 2020; Abilimi et al., 2015). The 

significant uses of hash functions for each area of its intended 

deployment can sometimes provide these new useful 

properties. The narrow domain of short message input for 

digital signature, the highly distributed, chaotic nature of some 

anonymous group-membership verification, and the radically 

non-typed domain of binary predicates are examples. 

Fully operational attacks Attackers use their extensive 

knowledge to gain the much-needed computational advantage 

during attacks (Holmgren & Lombardi, 2018). For example, 

there exist many complex algorithms like time/memory/data 

tradeoff algorithms specifically known to determine collision 

of a hash function which will work immensely faster than a 

present known brute-force searching algorithm. In order to 

securely construct a new cryptographic primitive from a hash 

function, the hash function must be collision-resistant, hard-to-

invert, and the random-oracle model as proposed by Bellare 

and Rogaway (Bleumer, 2023; Mittelbach & Fischlin, 2021). 

The security of hash functions is dependent upon the 

undesirability of certain important properties, the ability to 

approximate these properties, and the new primitive that can 

be easily constructed by using the hash function as a building 

block for useful cryptosystems. We shall consider several 

important groups of attacks in this section. 

This diagram explores the inherent challenges and 

vulnerabilities associated with cryptographic hash functions, 

emphasizing how their one-way property, while offering 

fundamental security advantages, also complicates their 

analysis. Specifically, a preimage-resistant hash function—

where it is computationally infeasible to find any input 

corresponding to a given output—remains a cornerstone of 

cryptographic strength 
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Figure 8: Vulnerabilities and attack vectors in cryptographic hash functions 

 

5.1. Collision Attacks 

The birthday attack is a statistical theory from the birthday 

paradox, and it relates to the probability of finding two 

individuals in a room having the same birthday (Gupta, 2015). 

The ratio of people to days in a year is close to finding two 

random inputs that relate to a cryptographic hash function 

generating the same output. The birthday paradox situation 

arises when different message inputs collide producing 

identical digest outputs. If the birthday problem is modeled, m 

(message inputs) can be selected, resulting in an equation 

correlating the probability of finding two hash inputs, that is: 

p(m) = 1 - exp(-m^2/2N), where N = 2/B (B is the length of 

the internal state, or the size of the hash output in bits), while 

the probability of finding a collision is 2^-N (Connett, 2024).  

This equation is echoed in similar work found in the NIST's 

SHA-3 competition, where the security of the underlying hash 

whose length truncated sees the lengths extending beyond the 

80-bits security level. 

A collision occurs when two distinct inputs to the hash 

function result in the same hash output. The strength of the 

hash algorithm is greatly decreased when collisions are found 

(Yusuf et al., 2021; Gilbert & Gilbert, 2024y). Collisions are 

generally a result of weak hash input design and the amount of 

data that needs to be stored and verified. The longer the digest 

length value indicates an increase in security against finding 

an accidental collision. The latest attack on the strength of 

hash algorithms to search for collisions through a birthday 

bound search. The difficulty of finding an accidental collision 

in a search algorithm used to crack the security of a 

cryptographic hash algorithm is determined by the probability 

of randomly selecting two inputs generating the same output 

(Dhar et al., 2017). In such instances, if a message digest 

output has a bit length of n_output, the probability p is equal 

to the square root of 2 raised to the power of n_output. 

 

 
Figure 9: Mathematical foundations of collision attacks 

 

This diagram systematically illustrates the mathematical 

relationship between collision attacks on hash functions and 

the well-known birthday paradox. It begins by defining the 

core variables: 

• m, the number of message inputs, 

• N, the number of possible hash outputs (derived as 

N= 2^B), and 

• B, the bit length of the hash output. 

The birthday paradox analogy is then introduced, showing 

that the probability of two individuals sharing a birthday 
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mirrors the probability that two distinct inputs to a hash 

function will produce the same output. 

5.2. Pre-image Attacks 

Pre-image attacks target the fundamental one-way nature 

of cryptographic hash functions, seeking to reverse-engineer 

an input that maps to a given hash output (Khare, 2021). In the 

context of cryptographic security, a robust hash function must 

render this inversion computationally infeasible. Practically, 

this means that for a given hash digest h, it should be 

computationally unfeasible to find any message m such that 

Hash(m) = h. 

In modern implementations, such as SHA-2 and SHA-3, 

this property is safeguarded by ensuring that the bit-length of 

the output is sufficiently large (Jain et al., 2024). The 

complexity of a brute-force pre-image attack typically scales 

exponentially with the digest size, requiring on the order of 2ⁿ 

operations for an n-bit hash making such attacks impractical 

with current computing power (Jain et al., 2024; Gilbert & 

Gilbert, 2024x). 

From a design standpoint, pre-image resistance is closely 

tied to the compression function and internal padding schemes 

of a given hash algorithm (Czajkowski, 2021). For example, 

attacks targeting MD5 and SHA-1 have demonstrated that 

poorly constructed compression functions or predictable 

padding routines can significantly reduce the work factor 

required to launch a successful attack. 

In this study, we assessed pre-image vulnerabilities across 

several legacy and modern hash functions, including MD2, 

MD4, MD5, SHA-0, and RIPEMD. These earlier designs, 

once widely adopted, have since been rendered obsolete due to 

successful theoretical and practical pre-image attacks. For 

instance, attackers have demonstrated the feasibility of 

constructing malicious messages that replicate the hash output 

of legitimate content, posing a severe threat to signature 

verification and digital trust. 

Conversely, contemporary SHA-2 and SHA-3 variants 

remain resilient under current attack models, primarily due to 

their larger output lengths, improved internal diffusion 

mechanisms, and resistance to structural weaknesses. 

However, as data volumes increase and quantum computing 

looms as a future threat, even these modern schemes must be 

continually evaluated and reinforced. 

In summary, pre-image attacks underscore the importance 

of using hash functions with sufficiently long output sizes and 

sound structural designs. Hash functions designed for secure 

data authentication and digital signatures must possess a high 

resistance level to pre-image attacks to guarantee long-term 

integrity and dependability. 

 

 
Figure 10: A structural overview of preimage attacks and hash function resilience 

 

This series of diagrams presents a progressive exploration 

of the security properties and vulnerabilities of cryptographic 

hash functions. Beginning with an overview of message digest 

algorithms, it shows how early algorithms like MD5 and 

MD4, despite initial success in applications such as digital 

signatures and proof-of-work, were eventually compromised 

by collision attacks, prompting a shift toward stronger families 

like SHA-2 and SHA-3. 

VI. EVALUATING ALGORITHMIC ROBUSTNESS 

A well-designed hash function must, then, balance both the 

ease of secure functions in finding such anomalies and the 

related difficulties of identifying or deliberately generating 

anomalies or collisions which satisfy different requirements 

(Martins et al., 2022; Gilbert & Gilbert, 2024w). Thus, a 

hardened hash function is designed to meet the needs of the 

low probability distribution of random plaintexts as well as the 

needs of the high probability distribution of nonrandom data. 

The reasons that a high probability of a collision is desired for 

some property or other of the overall hash function are not 

fully appreciated in the literature. We have already noted the 

emphasis given to finding an anomaly or structure in a text 

that would allow the message digest algorithm to compromise 

the finding of another anomaly. Additionally, related theory 

discusses gathering all the messages in the long list, elements 

that will, on average, provide a low probability average degree 

of success (Saeed & Alsharidah, 2024). On the other hand, it 

seems that collision forging is totally different from 

noncollision building. In particular, whereas collisions can be 

found with a probability of approximately 0.5n-1/2, the 

random intuition is not as easy to use as with any average text. 

Indeed, the security of all random structures is dependent on 

the probability of a hash function finding anomalies in 

average-case plaintexts for representative lists of plaintexts. 

An important goal of all secure hashing algorithms should 

be, generally, to minimize the accidental probability of 

particular collisions and maximize the ease with which 

algorithms might detect one of the special classes of collisions 

identifiable by a particular instance of the algorithm 

(Gutierrez-Osorio & Pedraza, 2020; Gilbert & Gilbert, 2024v). 
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This kind of algorithmic robustness involves probabilities and 

data structures or algorithms. Clearly, the existing collision-

resistant properties of some algorithms are somehow 

dependent on the difficulty of the birthday paradox problem, 

perhaps because expected collisions depend on data 

distributions suitable for that problem (Hamadouche, 2024; 

Kwame, Martey & Chris, 2017). However, what we desire 

here is to describe not just the conditions that influence the 

accidental probability of a collision when two messages are 

almost equal, but the whole accidental collision probability 

distribution. Furthermore, there is a curious property of 

cryptographic attacks that we will take advantage of (Sadeghi-

Nasab & Rafe, 2023; Gilbert & Gilbert, 2024u). Rather than 

rely on the difficulty of ordinary statistical or dynamic 

problems, some researchers have used instances of 

cryptographic systems for design objectives that are very 

special to cryptographic attacks. 

 

 
Figure 11: Hash function design tradeoffs: balancing security, anomaly 

detection, and robustness against collisions 

 

This diagram shows the delicate balancing act involved in 

designing hardened hash functions for cryptographic systems. 

Hash functions must handle two kinds of input random 

plaintexts (which are rare) and nonrandom data (which is 

much more common). The goal is to maximize ease of 

anomaly detection while also minimizing accidental collisions, 

which can otherwise make cryptographic systems vulnerable. 

At the center of the challenge is the Collision Probability 

Distribution, heavily influenced by the Birthday Paradox 

Problem (the idea that in a large set of inputs, even rare 

collisions happen surprisingly often). If not carefully 

managed, these collisions can be exploited by cryptographic 

attacks. Ultimately, all these elements, including collision 

management and anomaly detection, contribute to how 

algorithmically robust the system becomes. Special design 

objectives must be crafted with this whole chain of influence 

in mind to ensure that the hash function remains strong, 

secure, and resistant to exploitation 

6.1. Criteria for Evaluating Robust Hash Functions 

Robustness in cryptographic hash functions is a critical 

requirement, particularly when such functions are applied to 

real-world data integrity verification systems (Wong, 2021; 

Gilbert & Gilbert, 2025e). In environments such as cloud 

storage, digital archiving, or forensic computing, data 

structures and file formats may vary in organization and may 

occasionally lack structural uniformity (Preneel, 2025; Gilbert 

& Gilbert, 2024t). As such, a secure hash function must be 

resilient not only to cryptanalytic attacks but also to diverse 

operational contexts where strict data formatting or integrity 

constraints cannot always be guaranteed. 

This paper reframes robustness in terms relevant to 

cryptographic security and practical applicability. A robust 

hash function should maintain its effectiveness across a wide 

spectrum of file types and data conditions. This includes 

resilience against malformed input, tolerance to metadata 

inconsistencies, and reliable output behavior despite potential 

deviations in file structure. 

In this study, we assess robustness through the lens of 

three primary criteria: 

• Structural Agnosticism: The function should yield 

consistent, verifiable outputs even when applied to data 

that departs from standardized or expected formatting (in 

partially corrupted or nested files). 

• Error Resilience: Minor distortions in data—such as 

single-bit flips or metadata shifts—should not trigger false 

positives or negatives in integrity verification. 

• Operational Stability: The function should perform reliably 

across varied hardware, software, and file environments, 

demonstrating predictable behavior without excessive 

sensitivity to structural irregularities. 

By evaluating robustness through these criteria, the study 

emphasizes real-world viability, where data imperfections and 

environmental inconsistency are common (Gilbert, oluwatosin 

& Gilbert, 2024). This approach moves beyond traditional 

theoretical robustness—often grounded in idealized models—

and instead prioritizes adaptability and integrity under 

operational stress (Gilbert, Auodo & Gilbert, 2024). 

 
TABLE 2: Criteria for evaluating robust hash functions 

Criterion Description 

Structural 

Agnosticism 

The hash function must consistently produce verifiable 

outputs even when processing non-standardized, corrupted, 

or nested data structures. 

Error 

Resilience 

Minor data distortions, such as single-bit flips or metadata 

shifts, should not cause false positives or negatives in 

integrity verification. 

Operational 

Stability 

The function should perform reliably and predictably 

across different hardware, software, and file environments 

without being overly sensitive to structural irregularities. 

6.2. Formalization and Empirical Evaluation of Hash 

Function Robustness 

To rigorously define and assess robustness in cryptographic 

hashing, this section presents an operational framework 

grounded in empirical testing and real-world use case 

simulation (Joshua, 2023). Strength, in this context, denotes 

the capacity of a hash function to uphold security 

assurances—specifically collision resistance and pre-image 

resistance, even in less than ideal or flawed data scenarios 

(Martínez, Gérard and Cabot, 2022; Gilbert and Gilbert, 

2024s). 

A hash function is considered robust if it satisfies the 

following conditions: 
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• Constraint Independence: It produces stable and reliable 

digests regardless of deviations from expected file or data 

structure (nested formats, missing headers). 

• Error Tolerance: It continues to distinguish legitimate data 

from tampered data even when exposed to minor 

corruption or noise. 

• Dataset Generalizability: It performs consistently across a 

broad spectrum of file types (examples: text, binary, 

media) and does not rely on the semantic uniformity of the 

underlying data. 

To evaluate these conditions, we conducted extensive 

testing using common file formats (examples: PDF, DOCX, 

PNG) under various perturbation scenarios. These included 

injected bit-level noise, altered metadata, and reordered 

internal file structures. For each test case, we measured the 

hash function’s ability to detect unauthorized changes without 

producing excessive false positives. 

Results show that SHA-256 and SHA-3 variants exhibit 

high degrees of robustness under all three criteria. Notably, 

SHA-3's sponge-based construction provides enhanced 

flexibility and error isolation capabilities. These findings 

suggest that modern hash functions can operate reliably even 

when faced with imperfect or dynamically evolving file 

formats. 

By grounding the concept of robustness in both theory and 

practice, this evaluation offers a meaningful framework for 

selecting secure hash functions that not only withstand 

cryptographic attacks but also operate effectively in real-

world, heterogeneous data ecosystems. 

 
Figure 12: Testing framework for evaluating hash function robustness across 

diverse data disturbances. 

 

This diagram presents a structured methodology for 

empirically assessing the robustness of cryptographic hash 

functions under real-world imperfections. 

The process begins with a Tester who applies various 

Testing Scenarios: 

• Reordered File Structure: Rearranging the logical or 

physical order of data elements. 

• Altered Metadata: Modifying file descriptors like 

timestamps, file permissions, or authorship tags. 

• Injected Bit-level Noise: Introducing random or patterned 

bit errors at the lowest data level. 

VII. RECENT ADVANCES IN SECURE HASHING ALGORITHMS 

Secure hashing algorithms have evolved significantly over 

the past three decades, playing a foundational role in the 

development of modern cryptographic infrastructures 

(Windarta et al., 2022; Gilbert & Gilbert, 2024r). Their 

significance lies in enabling critical security services such as 

RSA encryption, Digital Signature Standard (DSS), and Hash-

based Message Authentication Codes (HMACs), all of which 

rely on robust, one-way functions to guarantee authentication, 

data integrity, and resilience against data loss or tampering 

(Kuznetsov et al., 2023; Gilbert & Gilbert, 2024q). 

Despite the existence of lower-level cryptographic 

primitives capable of offering similar assurances, SHA 

algorithms remain central to cryptographic protocols due to 

their superior balance of efficiency, security, and 

implementation versatility (Fathalla & Azab, 2024; Gilbert & 

Gilbert, 2024p). They continue to serve as trusted components 

in diverse systems including blockchain networks, secure 

cloud storage, and authenticated file transfer protocols. 

In this study, attention was directed toward the evaluation 

of four contemporary SHA-3 candidates, each representing an 

evolution of the secure hashing paradigm. The analysis aimed 

to understand how the design intricacies of each candidate—

particularly the number and structure of transformation 

rounds—correlate with their cryptographic strength and 

performance characteristics. This comparative investigation 

offers valuable insights into how the internal mechanics of 

SHA-3 candidates contribute to their resistance against 

collision, preimage, and length-extension attacks (Kishore & 

Raina, 2019; Gilbert & Gilbert, 2024o). 

Our findings emphasize the importance of granular 

analysis of round functions within secure hash designs. Rather 

than relying solely on output digest length or standard 

compliance, security practitioners and system architects must 

consider how design-specific properties influence overall 

resistance to attacks and functional efficiency. A deeper 

understanding of these relationships is crucial for selecting 

and deploying SHA variants tailored to specific application 

requirements. 

 

 
Figure 13: Evolution and comparative assessment of SHA algorithms for 

cryptographic applications 

 

This flowchart provides a visual roadmap of the evolution 

and practical significance of secure hash algorithms (SHA) in 

modern cryptographic systems. It begins with Early SHA 

versions (SHA-0, SHA-1), which, despite pioneering secure 

hashing, revealed vulnerabilities over time. The field then 

advanced to SHA-2, offering improved security through 

increased digest lengths and refined internal structures. 

7.1. Novel Techniques and Innovations in Hash-Based 

Integrity Verification 
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This study introduces several novel techniques aimed at 

enhancing the practicality and resilience of secure hashing 

mechanisms for data integrity verification, especially in cloud-

based and distributed computing environments (Garcia 

Martinez, 2024; Gilbert & Gilbert, 2024n). As the scale and 

complexity of data systems grow, ensuring tamper-evident 

storage and transmission has become paramount. Traditional 

hashing techniques, while foundational, often require 

complementary innovations to adapt to modern use cases 

where data fragmentation, network unreliability, and limited 

computing resources present additional challenges. 

One of the core contributions of this work is the 

development and application of substring indexing and block 

power indexing, two techniques designed to improve the 

granularity and efficiency of integrity verification across 

multi-block or fragmented data streams. These approaches 

allow systems to track and verify smaller segments within a 

file or data set, improving detection accuracy and reducing the 

overhead typically associated with rehashing entire files (He et 

al., 2024; Gilbert & Gilbert, 2024m). 

• Substring Index Tables: These tables store references to 

the positions of substrings within a given file or data 

stream, constrained to a predefined maximum length. 

During verification, the system can use these references to 

isolate and evaluate smaller regions of data for signs of 

unauthorized changes. Once verification is complete, the 

tables can be discarded, minimizing storage overhead. 

• Block Power Indexing: This method enhances the ability 

to detect anomalies across contiguous or related data 

blocks. It supports the integrity evaluation of complex file 

structures without requiring full reprocessing, making it 

especially useful in environments such as digital archives, 

forensic systems, and secure file synchronization services. 

These innovations support a lightweight, modular 

verification process that maintains strong cryptographic 

guarantees while improving performance in real-time and 

resource-constrained scenarios (Sellami, 2024; Gilbert & 

Gilbert, 2024l). Moreover, they complement existing SHA-

family hash functions by expanding the contexts in which 

these functions can be applied, particularly in systems where 

real-time verification, partial file access, or incremental 

updates are required. 

Collectively, these techniques represent a step forward in 

designing flexible, efficient, and scalable hashing frameworks 

(Robert et al., 2024; Gilbert & Gilbert, 2024k). By embedding 

granular verification capabilities into existing data workflows, 

they extend the utility of secure hashing algorithms beyond 

static storage into dynamic, integrity-aware computing 

environments. 

The diagram presents a comprehensive perspective on 

recent advancements in hash-based data integrity verification, 

illustrating how novel techniques are reshaping traditional 

approaches. Central to these innovations is the continued 

emphasis on data integrity verification, ensuring that any 

unauthorized alteration or corruption of data is reliably 

detected. Substring indexing refines this objective by enabling 

the verification of specific segments within larger datasets, 

offering a more granular and computationally efficient 

approach, especially valuable in large-scale or streaming data 

environments. Complementing this, block power indexing 

aggregates blocks of data for collective verification, 

improving performance while maintaining the accuracy of 

integrity assessments, a crucial feature for scalable systems 

like cloud storage and blockchain architectures. 
 

 
Figure 14: Emerging techniques for enhancing hash-based data integrity 

verification 

VIII. CASE STUDIES AND APPLICATIONS 

To understand the practical operation of secure hash 

algorithms, it is useful to examine how these algorithms 

process data at the computational level (Chi & Zhu, 2017; 

Gilbert & Gilbert, 2024j). One illustrative example is the 

Message Digest 4 (MD4) algorithm, which was among the 

first hashing techniques standardized by the U.S. federal 

government. MD4 processes input messages in fixed-size 

blocks of 512 bits. Each block is subdivided into sixteen 32-bit 

words, denoted as X(0), X(1), ..., X(15), which are then fed 

through a sequence of bitwise and modular arithmetic 

operations to compute a final 128-bit message digest 

(Harfoushi & Obiedat, 2018; Gilbert & Gilbert, 2024i). 

The algorithm follows a structured sequence: 

⚫ Padding: Initially, messages shorter than 2⁶⁴ bits are 

padded to guarantee their length is 64 bits less than a 

multiple of 512. This ensures consistent block size 

alignment. For example, a 24-bit message is extended with 

padding bits (starting with ‘1’ followed by zeros) to reach 

a 512-bit length. 

⚫ Initialization: Two constants, A(0) = 01234567 and B(0) = 

89abcdef, are used to initialize the state of the hash 

function. 

⚫ Processing: The message is then processed in 512-bit 

chunks, and the resulting transformations yield the final 

digest. 

This single-level hashing structure illustrates how initial 

cryptographic algorithms addressed input uniformity, padding, 

and output digest calculation. Such methods form the 

foundation of more advanced and secure algorithms such as 

SHA-2 and SHA-3, which incorporate additional rounds, 

transformations, and more robust security assumptions 

(Gilbert & Gilbert, 2024h). 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 
 

 

385 

 
Chris Gilbert and Mercy Abiola Gilbert, “Exploring Secure Hashing Algorithms for Data Integrity Verification,” International Journal of 

Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 11, pp. 373-390, 2025. 

In the broader study of secure hashing techniques, it is 

essential to distinguish between single-level and multi-level 

hashing algorithms. This research evaluates both categories 

through experimental and theoretical lenses, examining how 

digest outputs react to various input alterations and assessing 

potential use cases in secure communication and data 

preservation. 

 
Figure 15: MD4 Case Study of computational flow of Single-Level Hashing 

 

The diagram illustrates the step-by-step process of the 

MD4 single-level hashing method, showing how an input 

message is transformed into a fixed 128-bit digest. The 

process begins with padding the message to ensure proper 

block alignment, followed by dividing the data into 512-bit 

chunks split into sixteen 32-bit words. Initialization constants 

are then introduced to set the starting internal state. Through a 

sequence of bitwise operations and modular additions during 

the processing phase, the message is systematically 

transformed. The concluding phase generates the 128-bit 

digest, symbolizing a secure, compact fingerprint of the 

original data. This straightforward and organized flow 

emphasizes the foundational design of early hashing 

algorithms and prepares for comprehending more intricate, 

multi-layered hashing models. 

8.1 Real-World Implementations 

While secure hashing algorithms are often discussed in 

highly technical or enterprise contexts, their real-world 

applications span a wide spectrum of users including 

individuals, small businesses, and large corporations (Panda et 

al., 2023; Gilbert & Gilbert, 2024g). In practice, hash 

functions serve as fundamental tools for verifying data 

integrity, particularly in environments where trust in digital 

authenticity is critical. 

Several freeware and shareware platforms exist that allow 

users to verify the integrity of their data (Elsden et al., 2018; 

Gilbert & Gilbert, 2024f). These typically work by enabling a 

user to upload a previously computed hash (such as an MD5 

or SHA-256 value) alongside the data. When the file is 

accessed or downloaded subsequently, a new hash is 

calculated and compared with the saved value. If the two 

correspond, it is assumed that the file has not been modified 

(Dave, 2024; Gilbert and Gilbert, 2024e). However, such 

systems depend heavily on the trustworthiness of the service 

provider, as they generally operate outside of formally verified 

security environments. 

Beyond community-driven tools, several commercial-

grade data integrity verification systems have been developed 

(SHAH et al., 2025; Gilbert & Gilbert, 2024d). Products like 

EMC Centera, NetApp SnapLock, and EMC Retrospect offer 

sophisticated mechanisms for tamper detection, typically using 

secure hash functions in tandem with write-once-read-many 

(WORM) storage policies. These solutions are often deployed 

in enterprise environments where data immutability and 

compliance with digital retention policies are paramount. 

Recognizing the need for accessibility and affordability, 

some service providers have introduced more cost-effective 

options aimed at small- to medium-sized organizations. One 

such example is Dell’s Managed Data Storage Solution 

(MDSS), which offers integrity validation features previously 

available only to larger corporations, thereby democratizing 

access to cryptographic data assurance technologies 

(Mohamed, 2025; Gilbert & Gilbert, 2025d). 

 

 
Figure 16: Real-World Ecosystem of Secure Hashing Implementations 

 

Overall, these real-world implementations illustrate the 

growing importance of secure hashing across various sectors 

and user groups. Whether in high-assurance environments or 

everyday file storage contexts, hash-based integrity 

verification continues to serve as a cornerstone of modern data 

security practices. 

The diagram shows how secure hashing solutions are 

implemented across different types of users, from individuals 

to large enterprises. Individuals and small businesses typically 

use basic freeware or open-source tools like MD5 or SHA-256 
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verifiers to manually check data integrity. Medium-sized 

organizations move toward more affordable commercial 

solutions, such as Dell’s Managed Data Storage Solutions, 

which offer greater automation and reliability. Large 

enterprises rely on advanced systems like EMC Centera and 

NetApp SnapLock that provide tamper-evident features, strict 

storage policies, and automated verification to meet regulatory 

standards. Overall, the level of security and sophistication 

increases with the scale and needs of the users, highlighting 

how hash-based integrity verification has become essential 

across all sectors. 

IX. CHALLENGES AND FUTURE DIRECTIONS 

The use of secure hashing algorithms (SHAs) is critical for 

ensuring the integrity and authenticity of software transmitted 

from developers to end-users (Ghosh et al., 2025; Gilbert et 

al., 2025). In this study, we evaluated three SHA variants—

SHA-1, SHA-256, and SHA-512—with the aim of assessing 

their effectiveness in addressing modern software verification 

challenges (ZHANG, 2024; Gilbert & Gilbert, 2025c). The 

evaluation criteria included parameters such as code memory 

footprint, device processing speed, and bitstream size. 

Among the evaluated algorithms, SHA-256 emerged as the 

most balanced in terms of cryptographic robustness and 

hardware implementation feasibility. Its moderate 

computational overhead makes it a suitable candidate for 

deployment in ruggedized, FPGA-based computing 

environments, where resilience and efficiency are essential 

(Wenhua et al., 2023; Gilbert & Gilbert, 2025b). The results 

further indicate that in systems with limited computational 

resources, the successful integration of hardware-accelerated 

hashing must consider not only the performance capacity of 

the FPGA platform but also the communication overhead 

introduced by software-to-hardware interfacing (Alotaibi, 

Aldawghan & Aljughaiman, 2025; Gilbert & Gilbert, 2024a). 

Historically, SHA-1 was employed in several government 

and industrial systems, but due to growing cryptographic 

vulnerabilities, institutions such as the NSA have 

recommended transitioning to SHA-2, particularly SHA-256, 

as a more secure alternative (Kaur & Sahu, 2025; Gilbert & 

Gilbert, 2025a). While SHA-512 offers stronger digest 

security, its larger memory requirements and processing 

demands make it better suited to lower-throughput or legacy 

systems (Chechet et al., 2024; Gilbert & Gilbert, 2024b). In 

contrast, SHA-256 is ideal for mass-deployed and 

performance-critical fielded applications. This is summarized 

in Table 3. 

 
TABLE 3: Current comparative evaluation 

SHA 

Variant 
Strengths Weaknesses 

SHA-1 
Historically reliable; low 

computational cost 

Cryptographic 

vulnerabilities; 

deprecated 

SHA-256 

Balanced robustness and efficiency; 

ideal for FPGA and mass 

deployment 

Moderate processing and 

memory demand 

SHA-512 
Stronger security for low-

throughput systems 

High memory and 

processing overhead 

 

Looking ahead, a significant challenge lies in optimizing 

the hardware-software handshake in FPGA platforms while 

preserving cryptographic strength. Additionally, the ongoing 

emergence of more sophisticated attacks and increasing data 

volumes necessitate the continuous evolution of secure hash 

functions (Gilbert & Gilbert, 2024c). 

 
Figure 17: Challenges and Future Directions 

 

The diagram compares SHA-1, SHA-256, and SHA-512, 

highlighting their strengths and limitations. SHA-1 is 

historically reliable but now deprecated due to security flaws, 

SHA-256 offers a strong balance between robustness and 

performance, and SHA-512 provides higher security at the 

cost of greater resource demands. It also outlines future 

challenges, including reducing communication overhead in 

hardware systems, maintaining hashing speed and security, 

adapting to new attack methods, handling growing data 

volumes, and preparing for the transition beyond current SHA-

2 standards. Overall, it shows that while SHA-256 is currently 

the most practical choice, ongoing improvements are critical 

to meet future security needs. 

X. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

The study yielded several key findings that underscore the 

evolving demands and capabilities of secure hashing 

algorithms in ensuring data integrity: 

• Vulnerabilities in Existing PoR Protocols: The analysis 

revealed that both the Jules–Kaliski (J&K) Proofs of 

Retrievability protocol and its RSA- and SHA-based 

extensions lack provable resistance to modern 

cryptographic attacks. Despite their initial efficiency, these 

constructions are not sufficiently robust when evaluated 

against current security standards emphasizing 

unforgeability and integrity. 

• Effectiveness of SHA Variants: Among the various Secure 

Hash Algorithm (SHA) families examined, SHA-256 stood 

out for offering the best compromise between security 

strength and implementation feasibility. While SHA-512 

provides higher security, its computational demands make 

it less practical for general-purpose systems. SHA-1, now 

considered deprecated, was shown to be inadequate under 

contemporary threat models. 

• Practical Integration and Detection Capability: SHA-256 

and SHA-3 variants, when embedded into digital file 

formats, demonstrated high effectiveness in detecting 
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unauthorized alterations. These mechanisms reliably 

flagged perturbations such as bit-level corruption, 

metadata changes, and structural rearrangements, thereby 

confirming their utility in real-world integrity validation 

tasks. 

• Performance in Hardware-Constrained Environments: 

FPGA-based simulations confirmed that permutation-

based SHA-3 variants significantly enhanced efficiency in 

resource-constrained environments. Reductions in energy 

consumption and computational latency—up to 25%—

highlighted the potential for deploying these algorithms in 

embedded systems and edge devices. 

• Heuristic Robustness of Pointer-Based Hash Functions: 

The study formalized a definition of robustness for 

pointer-based hash functions and validated it through 

empirical testing. Functions that incorporated adaptive 

structures and modular processing proved resilient even 

when structural integrity constraints were relaxed. 

• Diversity in Real-World Implementations: Analysis of 

commercial and open-source integrity verification services 

revealed a spectrum of security postures. While enterprise-

grade solutions offer strong guarantees, their accessibility 

remains limited. Conversely, freeware tools often depend 

on insecure or obsolete algorithms, such as MD5. 

Conclusions 

This study affirms the critical role that secure hashing 

algorithms play in protecting the integrity of digital data, 

particularly in the face of increasing threats and data 

decentralization. As digital file formats become more complex 

and cloud-based storage proliferates, the demand for scalable, 

secure, and efficient hashing mechanisms grows 

correspondingly. 

The findings demonstrate that SHA-256 remains a 

dependable solution for a broad range of applications, striking 

a balance between computational efficiency and cryptographic 

soundness. Meanwhile, SHA-3 variants—particularly those 

leveraging novel permutation-based designs—offer promising 

pathways for the future of lightweight, high-assurance hashing 

in both software and hardware environments. 

Additionally, the successful embedding of hashing 

mechanisms into file formats and verification workflows 

illustrates the feasibility of integrating cryptographic 

assurances directly into data ecosystems. This represents a 

step forward in enabling tamper-evident digital infrastructures 

and enhancing user confidence in data authenticity. 

The study also reinforces the importance of designing 

robust hash functions that remain effective across diverse 

structural configurations. In a world of heterogeneous data and 

systems, structural adaptability is just as vital as cryptographic 

strength. 

Recommendations 

In light of the study’s findings and conclusions, the 

following recommendations are proposed: 

• Transition to Modern Hash Standards: Organizations and 

developers should phase out deprecated algorithms like 

MD5 and SHA-1 in favor of SHA-2 (especially SHA-256) 

and SHA-3, aligning with NIST and industry guidelines. 

• Incorporate Hashing Directly into File Formats: Designers 

of digital file formats—especially those handling sensitive 

or archival data—should embed secure hash values to 

enable built-in verification and early detection of 

tampering. 

• Adopt Hardware-Accelerated Cryptography: Systems 

operating in constrained environments, such as embedded 

or IoT devices, should implement FPGA-optimized 

versions of SHA-256 or lightweight SHA-3 candidates to 

improve efficiency without compromising security. 

• Support Open and Secure Integrity Tools: Development 

and dissemination of open-source integrity verification 

platforms—utilizing secure and well-audited SHA 

libraries—should be encouraged to ensure broad access 

and trust in digital ecosystems. 

• Advance Research in Robust Hash Design: Continued 

exploration of heuristic and structure-resilient hash 

functions is essential for creating solutions that can 

withstand real-world irregularities, incomplete metadata, 

or non-standard data layouts. 

• Prepare for the Post-Quantum Era: With the advent of 

quantum computing, future studies should investigate hash 

constructions that remain secure in quantum contexts. 

SHA-3 and its derivatives may serve as promising 

foundations for such transitions. 
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