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Abstract— The paper describes an adaptive forecasting model for 

pharmaceutical sales that uses multi-task learning (MTL) and 

reinforcement learning (RL) to address the difficulties of demand 

variability. Using MTL, the model captures similar patterns across 

many medication classes and areas, allowing for broad 

generalization while retaining unique task-specific information. The 

RL component improves adaptability by changing projections based 

on real-time feedback, which is critical for managing rapid changes 

in demand. Our MTL-RL model delivers higher accuracy, with an 

RMSE of 4.75, MAE of 3.22, and MAPE of 4.86%, beating standard 

models such as ARIMA, Prophet, LSTM, and hybrid LSTM-XGBoost. 

This technique not only increases forecast precision and flexibility in 

pharmaceutical sales, but it also creates a scalable framework that 

can be applied to other industries with volatile demand, allowing for 

more data-driven, responsive decision-making. 

 

Keywords— Pharmaceutical sales forecasting, multi-task learning, 
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I. INTRODUCTION  

This Pharmaceutical sales forecasting is crucial for managing 

supply chains, optimizing inventories, and planning price and 

distribution [1]. However, predicting in this industry is tough 

due to the very volatile character of the market [2, 3]. Seasonal 

variations, regulatory changes, adjustments in market rivalry, 

and larger economic situations can all cause unexpected shifts 

in demand for pharmaceutical items[4]. Traditional forecasting 

methods, which typically rely on historical data and static 

models, often fall short of capturing these dynamic shifts [5]. 

Although these methods function well when conditions are 

constant, they struggle to adjust when rapid changes occur, 

potentially leading to mistakes in estimating demand [6]. 

Recent advances in machine learning have brought new 

techniques to address challenging forecasting challenges [7]. 

Among these advancements, multi-task learning (MTL) has 

emerged as a technique that enables models to perform 

multiple related tasks at once [8]. MTL allows a single model 

to predict across various categories [9], such as different drug 

classes or regions, by capturing both shared and unique 

patterns within the data [10]. This shared-learning approach 

[11] is particularly beneficial in the pharmaceutical sector, 

where data availability can vary significantly between 

categories. By pooling information across tasks, MTL can 

improve model performance, even in cases with sparse data 

for certain regions or drug classes [12], [13]. As a result, 

multi-task learning provides a way to handle both broad and 

category-specific patterns in sales data [14]. 

Reinforcement learning (RL) has also gained attention for 

its ability to support adaptive decision-making [15]. Unlike 

traditional methods that rely on static historical data, RL 

enables a model to continuously adjust to new data by learning 

through interaction [16]. In an RL setup, a model learns to 

make better predictions over time by receiving feedback from 

its environment [17]. This adaptability is crucial for markets 

like pharmaceuticals, where demand may change in response 

to current events, public health trends, or regulatory shifts, 

[18] By incorporating feedback and adjusting its predictions 

accordingly, an RL-based model can better track these market 

[19] changes, resulting in more accurate and responsive 

forecasts [20]. The pharmaceutical industry struggles with 

accurate sales forecasting due to demand variability influenced 

by seasonal trends, regulatory shifts, competition, and 

economic changes [21]. Traditional forecasting models, often 

single-task or static, fail to adapt to these rapid market 

dynamics, limiting their effectiveness[22]. Single-task 

learning models focus on individual drug classes or regions 

without leveraging cross-task insights [23], while static multi-

task models share knowledge across categories but lack real-

time adaptability [24]. Reinforcement learning models, though 

adaptive, typically address only single-task settings and miss 

out on cross-task learning benefits [25].This research seeks to 

address these limitations by developing an adaptive 

forecasting model that integrates multi-task learning and 

reinforcement learning to enhance predictive accuracy and 

flexibility across drug classes and regions [26]. The research 

aims to answer how adaptive, multi-task approaches can 

improve forecasting accuracy in dynamic markets and enable 

more informed decision-making within the pharmaceutical 

sector [27]. 

1) How can adaptive forecasting improve accuracy across 

drug classes and regions? 

2) What advantages does multi-task learning bring to cross-

category forecasting? 
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3) How does reinforcement learning enhance model 

adaptability to market changes? 

The significance of this research lies in its potential to advance 

pharmaceutical sales forecasting by creating a model that is 

both accurate and responsive to dynamic market conditions 

[28]. By combining multi-task learning and reinforcement 

learning, the study addresses key limitations of existing 

models, such as their inability to generalize across drug 

classes and adapt to real-time changes [29]. This adaptive 

approach not only enhances forecasting precision across 

diverse categories and regions but also supports more 

informed decision-making in areas like inventory 

management, pricing, and distribution [30]. Ultimately, this 

research aims to offer a robust solution for pharmaceutical 

companies facing an increasingly complex and fluctuating 

market environment.  

II. LITERATURE REVIEW 

In recent years, pharmaceutical sales forecasting has 

gained importance due to the industry’s intricate supply chain 

and variable demand. Accurate forecasting models are crucial 

for predicting demand [31], optimizing inventory, and 

avoiding drug shortages. Traditional methods, such as ARIMA 

and exponential smoothing, have been standard in the field. 

For instance, a study applying ARIMA and Holt-Winters 

models in pharmaceutical forecasting achieved an RMSE of 

118 and a MAPE of 5.37%, demonstrating some success but 

highlighting limitations in adapting to fast-changing market 

conditions [32]. Similarly, a study using exponential 

smoothing in Indonesia’s pharmaceutical sector explored its 

impact on net profit forecasting, underscoring the method’s 

limitations in adapting to fluctuating demand [33]. These 

methods, while useful, often lack the flexibility needed for 

dynamic pharmaceutical markets, leading researchers to adopt 

more advanced machine-learning approaches. 

Machine learning models, particularly Random Forest and 

gradient boosting, have shown promise in enhancing demand 

forecasting. A study using Random Forest and decision trees 

recorded an accuracy improvement of 10% to 41% in 

pharmaceutical supply chain forecasts, indicating that machine 

learning can outperform traditional models by identifying 

complex demand patterns [34]. Another study on neural 

networks demonstrated that shallow neural networks, with an 

RMSE of 6.27, sometimes outperform deep models due to 

better adaptability with limited datasets [35]. These results 

reinforce the advantages of machine learning models in 

handling non-linear demand changes, especially within 

complex supply chains. 

The adoption of deep learning techniques, such as Long 

Short-Term Memory (LSTM) networks, has further advanced 

the field. In a comparative analysis, LSTM outperformed the 

Prophet model, achieving a MAPE of 17.89% and an MAE of 

2103 on Chinese drug sales data [36]. LSTM’s ability to 

capture long-term dependencies makes it highly effective for 

time-series forecasting in the pharmaceutical sector. Similarly, 

hybrid deep learning models that combine LSTM with 

XGBoost have yielded notable results. For example, in an 

application of XGBoost to a dataset from Kaggle[37], the  

model achieved the lowest MAPE across several product 

categories, including 16.92% for M01AE (anti-inflammatory 

drugs) and 16.05% for N02BE (analgesics), showcasing the 

effectiveness of hybrid approaches [38] . 

Cross-series training represents another innovative 

approach to pharmaceutical forecasting. Zhu et al. applied 

cross-series training, allowing for simultaneous training on 

multiple product lines, which significantly enhanced model 

accuracy compared to single-task models [39]. This method 

benefits in- industries with broad product portfolios, as it 

captures shared demand patterns across multiple drugs, 

contributing to greater generalizability and forecasting 

accuracy. 

Explainable machine learning is becoming critical in 

pharmaceutical forecasting, especially for addressing supply 

chain transparency [40]. One study applied explainable 

machine learning to predict drug shortages, achieving high 

precision and recall, thus providing insight into supply issues’ 

underlying causes [41].This emphasis on transparency aligns 

with regulatory standards and aids decision-making by 

offering clear interpretations of forecasting results. 

Additionally, ensemble models are gaining traction; a study 

using ensemble Gaussian Process Regression [42] integrated 

multiple kernels, achieving significantly lower MSE and MAE 

compared to single-kernel models, demonstrating the 

robustness of ensemble techniques in handling complex 

demand patterns. 

Lastly, research has shown the value of integrating 

machine learning with data mining techniques. A study on 

pharmaceutical distributors in Iran employed network analysis 

alongside ARIMA and neural networks, capturing both linear 

and non-linear sales patterns. The hybrid neural network 

approach facilitated forecasting even with limited historical 

data, which is common in pharmaceutical sales. This 

comprehensive adoption of hybrid, deep learning, and 

explainable AI models underscores the shift towards adaptive 

forecasting techniques that meet the accuracy and 

transparency requirements unique to the pharmaceutical 

industry [43]. 

The literature review highlights the growing adoption of 

machine learning and deep learning techniques for 

pharmaceutical sales forecasting, showing improved accuracy 

and adaptability over traditional models [44]. However, 

significant gaps remain in achieving both high accuracies 

across multiple product categories and real-time adaptability 

to sudden market shifts. Most existing models, while effective 

in specific scenarios, struggle with generalization across 

diverse datasets or are computationally intensive, limiting 

their scalability practical applications. Furthermore, current 

methods often lack the interpretability required for regulatory 

compliance in the pharmaceutical industry. This research aims 

to address these gaps by developing an adaptive, multi-task 

learning model that leverages reinforcement learning, 

balancing accuracy, adaptability, and transparency for robust 

pharmaceutical sales forecasting. 
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TABLE I.  SUMMARY OF PHARMACEUTICAL SALES FORECASTING STUDIES 

References Methodologies Employed Dataset Utilized 
Evaluation 

Metrics 

Key Performance 

Results 
Limitations 

[32] ARIMA, Holt-Winters models Pharmaceutical data sales RMSE, MAPE 
RMSE = 118, MAPE 

= 5.37% 

Limited adaptability to 

fast-changing conditions 

[45] Exponential Smoothing 
Pharmaceutical sales data in 

Indonesia 

Forecast impact 

on net profit 

Highlights limitations 

in fluctuating demand 

Limited application in 

dy- namic markets 

[34] 
Random 

Trees 
Forest, Decision Pharmaceutical supply chain data Forecast Accuracy 

Accuracy improvement 

of 10%–41% 

Less effective with 

limited training data 

[35] 

Shallow Neural Networks 

(RBF NN, P NN, GR NN), 

Deep Neural Networks 
(LSTM, Stacked LSTM) 

Pharmaceutical sales

 data 
categorized) 

 

(ATC 
RMSE 

Shallow networks: 

RMSE 

= 6.27; Deep 
networks: Higher 

RMSE 

Limited adaptability in 

complex demand scenar- 
ios 

[36] Prophet, LSTM Chinese drug data sales MAPE, MAE 
MAPE = 17.89%, 

MAE = 2103 

Limited effectiveness 

for short-term forecasts 

[38] ARIMA, LSTM, XGBoost 

Kaggle dataset with 600,000 

transactions, ATC-categorized 
products 

MAPE 

Lowest MAPE for 

various products,  

e.g.,  M01AE 
= 16.92%, N02BE 

= 16.05% 

Computationally 

intensive for large 
datasets 

[39] 
Cross-series training with ad- 

vanced ML 
Large pharmaceutical datasets Forecast Accuracy 

Outperformed single-
task models 

significantly 

Complexity in model 

in- terpretation 

[46] 
Explainable ML for drug shortage 

prediction 
Pharmaceutical supply chain data 

Precision, Recall, 

F1 Score 

High precision and 

recall in shortage 
prediction 

Limited in multi-

category forecasting 

[42] 
Gaussian Process Regression with 

ensemble kernel 
Pharmaceutical data sales 

R2, MSE,

 MAE, 

RMSE 

R2 close to 1.0; 

reduced MSE and 

MAE 

Requires tuning of 
multi- ple kernels 

[47] 
Network Analysis, ARIMA, Neural 

Networks 

Pharmaceutical distributor data - 

Iran 

Various sales 

patterns 

Enabled effective 
forecast- ing with 

limited data 

Results specific to 
dataset; limited 

generalizability 

 

III. THE PROPOSED METHODOLOGY  

This research proposes an adaptive forecasting model that 

integrates MTL and RL to predict pharmaceutical sales [46] 

across multiple drug categories and regions. This section 

provides a mathematical formulation and workflow to solve 

the forecasting problem with high accuracy and adaptability. 

A. Problem Formulation 

Let: D = {D₁, D₂, …, Dₙ}: Set of pharmaceutical products 

(drug classes). 

R = {R₁, R₂, …, Rₘ}: Set of geographic regions. 

Sᵢⱼ = {s₁ᵢⱼ, s₂ᵢⱼ, …, sₜᵢⱼ}: Historical sales data for product Dᵢ in 

region Rⱼ up to time T. 

Objective Predict future sales (ŝᵢⱼ^(T+k)) over a forecast 

horizon (k): 

ŝᵢⱼ^(T+k) = F(Sᵢⱼ; Θ) 

Where: 

F: Predictive model 

Θ: Model parameters optimized to minimize forecast error 

across all drug-region pairs. 

Multi-Task Learning (MTL) Approach 

In MTL, predictions combine shared patterns and task-specific 

trends: 

ŝᵢⱼ^(T+k) = F_shared(Sᵢⱼ; Θ_shared) + Fᵢⱼ(Sᵢⱼ; Θᵢⱼ) 

F_shared: Captures common sales trends across all drugs and 

regions. 

Fᵢⱼ: Captures unique sales patterns specific to drug-region pair 

(Dᵢ, Rⱼ). 

Optimization Objective 

Minimize total loss (L_MTL) across all tasks: 

L_MTL = Σᵢ₌₁ⁿ Σⱼ₌₁ᵐ L(ŝᵢⱼ^(T+k), sᵢⱼ^(T+k)) 

Using Mean Squared Error (MSE): 

L(ŝᵢⱼ^(T+k), sᵢⱼ^(T+k)) = Σₜ₌₍ₜ₊₁₎^(ₜ₊ₖ)(ŝᵢⱼᵗ - sᵢⱼᵗ)² 

B. Reinforcement Learning for Adaptability 

To achieve adaptability, we use reinforcement learning. 

We define an RL agent that interacts with the forecasting 

environment and updates model parameters based on real-time 

feedback to improve future predictions. 

The state at time t includes current sales data St and 

contextual information such as recent demand trends or 

external market factors. The action represents adjustments 

to model parameters Θij or hyperparameters for the task 

(Di, Rj). The reward is the negative error in forecasting, 

defined as rt = −L(sˆt+1, st+1). 
The RL agent seeks to maximize the cumulative 

reward 
Σ

t rt by updating its policy π(at|zt), where π is 

optimized using techniques such as policy gradient or Q-

learning. 

C. Combined Multi-Task Reinforcement Learning Framework 

The combined model leverages MTL for cross-

category generalization and RL for real-time parameter 

adjustments. The total loss function incorporates both the 

MTL loss LMT L and the RL reward to guide the model towards 

[47] both accurate and adaptable forecasting: 

D. Training Procedure 
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The training process consists of two phases. In the 

multi-task learning phase, we train the shared and task-specific 

layers by minimizing L. MTL across historical sales data for all 

tasks. (Di, Rj) In the reinforcement learning phase, the RL agent 

iteratively updates the model based on real-time feedback, 

refining parameters to adapt to changes in sales patterns. 

E. Forecasting and Adaptation Process 

At each forecasting step, the MTL model is initialized using 

historical sales data for each (Di, Rj) pair. Predictions are 

generated by computing sˆT +k using F (Sij; Θ). The RL agent 

then receives feedback from forecast errors and adapts 

parameters to improve future predictions. 

F. Evaluation Metrics 

We evaluate the model using RMSE, MAPE, and MAE to 

quantify forecasting accuracy. Adaptability is measured by 

tracking the reduction in forecast error over time, reflecting the 

model’s responsiveness to dynamic market conditions. 

G. Flow of the System 

The system flow begins with data preparation, where 

historical sales data Sij for each drug Di and region Rj is 

collected and preprocessed. Next, multi-task learning 

initialization occurs, where the shared and task-specific layers 

are trained to minimize LMT L. After this, the reinforcement 

learning agent is deployed to interact with the forecasting 

model, receiving feedback on forecast accuracy and making 

real-time adjustments to parameters. In the forecast generation 

stage, the combined model generates predictions sˆT +k for 

each (Di, Rj) pair. Model adaptation follows, where the RL 

agent updates the model’s parameters based on forecast errors 

to improve adaptability. Finally, the system evaluates accuracy 

and adaptability metrics, including RMSE, MAPE, and MAE, 

to assess performance. 

IV. EXPERIMENT SETTING 

In this experiment, the researchers utilized the IQVIA and 

IMS Health Data datasets, which provided extensive, 

structured pharmaceutical sales data across various drug 

classes and geographic regions. These datasets were 

segmented by drug type and location to align with the Multi-

Task Learning (MTL) framework. The data was preprocessed 

to handle missing values, normalize features, and structure it 

by time series for each drug-region pair. To efficiently manage 

the high volume of data, processing was optimized for GPU 

acceleration, and data batches were organized to support both 

shared and task-specific layers in the MTL model. 

The model was implemented in Python using PyTorch for 

the MTL framework and Stable Baselines3 for the 

Reinforcement Learning (RL) agent. The experiments were 

conducted on Google Colab Pro with NVIDIA T4 or P100 

GPUs to accelerate model training and parameter tuning. The 

MTL model was first trained on historical data, after which the 

RL agent interacted with the model to adjust parameters in 

response to real-time forecast accuracy. Evaluation metrics 

such as Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and the time taken to visualize, monitor, and 

retrain using Weights & Biases were employed to track and 

assess model performance, ensuring efficient and adaptable 

integration across different drug classes and regions. 

V. RESULTS AND ANALYSIS 

Our MTL-RL model significantly improves forecasting 

accuracy in pharmaceutical sales compared to existing 

models, demonstrating enhanced adaptability across various 

drug classes and regions. This section presents a 

comprehensive analysis of our model’s performance using 

metrics such as RMSE, MAE, and MAPE. Our results are 

compared to state- of-the-art models from the literature, 

showing that our approach outperforms traditional and hybrid 

methods by achieving lower forecast errors consistently. 

A. Comparative Analysis with Literature 

Table II and Figure 4 summarizes our model’s 

performance in terms of RMSE, MAE, and MAPE against 

prominent models used in recent pharmaceutical forecasting 

studies. Notably, our model achieved an RMSE of 4.75, MAE 

of 3.22, and MAPE of 4.86%, surpassing the performance of 

LSTM, Prophet, and hybrid LSTM-XGBoost models. These 

improvements are due to the combined effect of MTL, which 

generalizes across drug classes, and RL, which adapts fore- 

casts in response to real-time sales fluctuations. 

The improvements in accuracy metrics underscore the ad- 

vantages of our MTL-RL model, which provides precise 

forecasts across drug categories and regions. Unlike traditional 

models like ARIMA and Prophet, which are static and lack 

real-time adaptability, our model dynamically adjusts forecasts 

using RL, capturing sudden shifts in demand. The MTL 

structure ensures knowledge sharing across similar drug 

classes, which traditional models cannot leverage, resulting in 

lower errors even with limited data for certain drug categories. 

 

 
Fig. 1. Chart highlights the consistency and relative error rates of each model 

over multiple periods 

B. Temporal Performance Analysis 

The RMSE and MAPE of our model were consistently low 

across all forecast periods, as shown in Figure. Compared to 

existing models like LSTM and hybrid LSTM-XGBoost, our 
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model maintained a steady error level, with minimal spikes, even 

during periods of demand volatility. This indicates the RL 

component’s effectiveness in refining forecast accuracy by 

adjusting parameters based on real-time feedback. In contrast, the 

performance of LSTM and LSTM-XGBoost models exhibited 

more variability, with higher error rates in periods with rapid 

market changes.  
 

TABLE II. Comparison Of Forecasting Accuracy With Literature 
Reference RMSE MAE MAPE (%) 

[26] 118 75.6 5.37 
[30] 17.89 2103 17.89 
[29] 6.27 4.12 6.27 
[31] 6.15 4.20 6.05 

Our Model (MTL-RL) 4.75 3.22 4.86 

 

 
Fig. 2. MAPE (%) trends for various models observed over time periods. The 
area chart emphasizes the magnitude and stability of prediction errors across 

models. 

 

This temporal analysis highlights the adaptability of our 

model compared to static models in the literature. The RL 

agent’s ability to adjust forecasts dynamically minimizes error 

spikes, making our model particularly suitable for the 

pharmaceutical sector, where sudden changes in demand are 

common. The low and stable error rates demonstrate that our 

model effectively manages demand volatility, providing 

reliable forecasts. 

C. Analysis Across Drug Classes and Regions 

Our model’s adaptability across drug classes and 

regions is a critical feature that ensures scalability and 

applicability in diverse market conditions. Figure presents the 

RMSE distribution by drug class, illustrating that the error 

remains consistently low across different categories. This 

performance consistency can be attributed to the shared 

layers in the MTL model, which generalize across tasks, while 

task-specific layers capture unique patterns for each drug 

class. 

Unlike other models in the literature, which tend to per- 

form well only on specific drug classes or regions, our 

model’s balanced performance across all classes demonstrates 

its robustness. By effectively capturing common patterns and 

individual nuances, our approach delivers consistent accuracy 

across regions, making it ideal for large-scale pharmaceutical 

applications. The results clearly show that our MTL-RL model 

outperforms both traditional models (e.g., ARIMA, Prophet) 

and advanced deep learning approaches (e.g., LSTM, hybrid 

LSTM- XGBoost) across all major metrics. The combined use 

of MTL and RL allows our model to generalize across multiple 

categories while adapting to real-time changes, providing a dual 

advantage in accuracy and flexibility. Compared to existing 

models, our approach reduces RMSE by up to 24%, MAE by 

22%, and MAPE by 20%, establishing it as the most accurate 

and adaptable method in the pharmaceutical sales forecasting 

domain. 
 

 
Fig. 3. RMSE comparison across different drug classes for multiple models. 

This bar chart reveals each model’s accuracy within specific therapeutic 

categories. 

 

 
Fig. 4. Heatmap visualizing the magnitude of RMSE, MAE, and MAPE 

across models using color intensity. Darker shades represent higher metric 
values, highlighting performance differences 

 

 
Fig. 5. Flow of the System: Multi-Task Learning and Reinforcement 

Learning Framework for Adaptive Pharmaceutical Sales Forecasting 

VI. CONCLUSION  

This study developed an advanced adaptive forecasting 

model for pharmaceutical sales by combining MTL and RL to 

address the unique challenges of demand variability in the 

industry. The MTL component enabled the model to capture 

shared patterns across multiple drug classes and regions, 

providing robust generalization while preserving unique task 
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characteristics. Meanwhile, the RL component dynamically 

adjusted forecasts based on real-time feedback, offering criti-

cal adaptability to sudden shifts in demand a common scenario 

in pharmaceutical sales. Our results demonstrated that the 

MTL-RL model achieved superior accuracy, with an RMSE of 

4.75, MAE of 3.22, and MAPE of 4.86%, surpassing 

traditional models like ARIMA, Prophet, LSTM, and hybrid 

LSTM-XGBoost. These findings underscore the strength of 

our approach in reducing forecast errors while consistently 

adapting to complex, multi-dimensional sales patterns. This 

study not only contributes a precise and adaptable model for 

pharmaceutical forecasting but also establishes a framework 

applicable to other industries with similar volatility 

challenges. Future research could further refine the RL 

component by incorporating additional contextual factors, 

such as regulatory changes, and testing the model across 

broader data sources to explore its generalizability, paving the 

way for more accurate, data-driven decision-making in 

dynamic markets.  
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