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Abstract— The growing demand for computational resources and IT 

technologies, including cloud services, data centers, and virtualization 

systems like VMware, has significantly increased energy consumption 

and environmental concerns. This research demonstrates a 

methodology for computing operational emissions, or carbon 

emissions due to energy consumption, as part of the Software Carbon 

Intensity (SCI) score. The method primarily focuses on the utilization 

of hardware resources, including CPU, memory, in virtual machine 

(VM) environments. With today technology of hypervisors, multiple 

virtual machines can be created on a single host machine. Each virtual 

machine has its own operating system and hardware resources. The 

study thus presents an energy consumption estimation model for VMs 

and resource-based power distribution method. Power consumption is 

estimated using boundary conditions, idle states, and trapezoidal 

integration. The resulting total energy consumption multiplied by the 

emission factor of electricity will contribute the value of operational 

emissions. The proposed framework would be considered as a 

preliminary step useful for data center operators and organizations 

aiming to achieve sustainable IT practices while maintaining 

operational efficiency. 

 

Keywords— Operational emissions: software carbon intensity: time-

weighted average: VMware: sustainability. 

I. INTRODUCTION  

The rapid expansion of computational and IT resource demands 

has led to widespread adoption of cloud services, data centers, 

and virtualization technologies such as VMware. While these 

technologies enhance resource allocation efficiency and reduce 

operational costs, they have also raised critical concerns about 

energy consumption and environmental impact. Large-scale 

data centers contribute significantly to energy usage and carbon 

emissions, necessitating more sustainable and efficient 

practices. A key metric for evaluating the environmental impact 

of software and IT operations is Software Carbon Intensity 

(SCI), which measures the carbon emissions resulting from 

hardware resource usage, such as CPU and memory utilization. 

These emissions directly influence the carbon footprint of 

organizations and data centers, making SCI a critical 

consideration for promoting environmentally friendly 

operations. This research demonstrates a methodology for 

calculating operational emissions as part of the SCI score. 

Operational emissions involve computing carbon emissions due 

to energy consumption. The VMware environment is selected 

for demonstrating the calculation using the proposed 

methodology. At this stage, we primarily focus on the 

utilization of hardware resources, namely CPU and memory. 

In literature, several strategies and best practices have been 

presented to enhance energy and resource efficiency, reduce 

carbon emissions, and foster sustainable resource management. 

Building upon prior research, such as the development of 

energy estimation models for VMs and resource-based power 

distribution methods, this study addresses the challenges of 

achieving practical energy measurements and efficient power 

consumption allocation in virtualization environments. In 2009, 

Kansal et al. [1] presented a solution for VM power metering to 

attack the difficulty that virtual machine power cannot be 

measured purely in hardware. The authors used resource 

utilization data to estimate VM energy consumption. The 

approach was promising and can be implemented on current 

virtualized platforms without adding any additional hardware 

or software instrumentation. In 2020, Gul et al. [2] presented 

energy-aware VM consolidation schemes that considered a 

server capacity in terms of CPU and RAM to reduce overall 

energy consumption. The study addressed the impact of RAM, 

which consumes about 25% of the joint energy of a server's 

CPU and RAM, on energy efficiency in VM consolidation. In 

2021, Davy [3] studied on AWS EC2 power consumption 

estimation that employs techniques like PUE analysis and 

resource-based power distribution. By leveraging insights from 

these studies, the research aims to provide practical solutions 

for optimizing SCI and advancing sustainability in IT 

operations. In 2023, Choudhury et al. [4] proposed an energy-

efficient VM consolidation approach that considered weighted 

summation of CPU and memory utilization. The method tried 

to reduce energy consumption by optimizing VM placement 

based on resource utilization metrics. The study introduced a 

symbiotic association between hosts and VMs, analogous to 

biological interactions, to enhance energy efficiency. Pamadi et 

al. [5] presented the recent advancements in dynamic resource 

allocation, energy efficiency, virtual machine migration, 

adaptive resource management, and load balancing strategies. 

The authors highlighted the role of reinforcement learning in 

optimizing resource allocation, reporting a 25% improvement 

in resource utilization through real-time decision-making. 

Additionally, the authors discussed energy-efficient resource 

management techniques by emphasizing the balance between 

performance and energy efficiency that would reduce energy 

consumption up to 30%. 

II. BACKGROUND  

A. Software Carbon Intensity 

Software Carbon Intensity (SCI) [6] is a standardized 

methodology for calculating carbon emissions associated with 

a software system by tracking its hardware and electricity 
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demands. It aims to guide users and developers in making 

informed choices about tools, architectures, and services to 

optimize carbon efficiency. SCI can be computed for a variety 

of applications, ranging from large-scale cloud systems to small 

open-source libraries. Developers play a key role in reducing 

SCI scores during all stages of software development, including 

writing energy-efficient code, optimizing database designs, and 

adopting carbon-aware build pipelines. A lower SCI score 

indicates better carbon efficiency, while achieving a zero SCI 

score is generally not feasible. The SCI calculation process 

involves four key steps: 

• Defining the Software Boundary− identifying the software 

components, including applications, servers, hardware, and 

supporting infrastructure, that contribute to SCI. 

• Determining Functional Units− selecting an appropriate 

functional unit, such as the number of users, API calls, or 

machine learning model training instances, for measuring 

carbon emissions. 

• Selecting Carbon Emission Calculation Methods− 

employing suitable methods to measure carbon emissions 

for each software component, either through real-world data 

or laboratory simulations. 

• Calculating and Aggregating SCI Scores− computing the 

carbon emissions for each software component and 

aggregating these values to determine the overall SCI score. 
The SCI formula for each component is expressed as in (1). 

𝑆𝐶𝐼 =
𝑂+𝑀

𝑅
                 (1) 

where 

O = operational emissions compute carbon emissions due to 

energy consumption, as in (2). 

M = embodied emissions measure carbon emissions embedded 

in hardware during production and disposal, as in (3). 

R =  functional unit, such as per user or per API call 

𝑂 = 𝐸 × 𝐼                     (2) 

where 

E = energy consumption of the hardware in kilowatt-hours 

(kWh), and 

I = carbon intensity of the energy in the specific region, 

measured in gCO₂eq/ kWh 

𝑀 = 𝑇𝐸 × 𝑇𝑆 × 𝑅𝑆              (3) 

where 

TE = total carbon emissions over the hardware’s  lifecycle,  

TS = fraction of time the hardware is used by the software, 

and 

RS = proportion of hardware resources utilized by the 

software e.g. allocated CPU cores 

SCI scores are then aggregated across all components using 

a common functional unit to provide a comprehensive SCI 

metric. 

B. Time-Weighted Average 

The Time-Weighted Average (TWA) [7] is a statistical 

method used for analyzing time-series data where 

measurements are taken at irregular intervals. The approach 

derives a more accurate average by weighing each data point 

according to the duration of its corresponding time interval, 

ensuring that longer intervals contribute proportionally to the 

overall average. This method is often used in scenarios such as 

IoT systems, remote sensing, and battery testing. 

The key idea behind TWA is to calculate the area under the 

curve of the time-series data, which represents the cumulative 

values over time. This area is divided by the total duration of 

the time period under consideration, yielding a weighted 

average that reflects both the values of the data points and the 

length of time they persist. By using this approach, TWA avoids 

the inaccuracies that arise when treating all data points equally, 

regardless of their temporal duration. 

Another important aspect that complements TWA is the 

Last Observation Carried Forward (LOCF/B) [8], which is a 

technique for handling missing data in time-series analysis, 

where the most recent available value is carried forward to 

replace missing data points. This method helps ensure that gaps 

in the data do not skew the results and is particularly useful in 

cases where measurements are sparse or irregular. 

Accompanied by TWA, LOCF/B can improve the continuity 

and accuracy of the data analysis by filling in missing intervals 

with relevant values, ensuring that the area under the curve is 

correctly computed. 

While TWA provides a more accurate representation of data 

through its focus on the area under the curve and its ability to 

handle irregular time intervals, LOCF/B ensures continuity 

when data gaps exist, enhancing the reliability of the TWA 

calculation in the contexts like energy consumption estimation 

and resource utilization in systems such as VMware 

environments. 

III. METHODOLOGY 

Despite the lack of direct energy consumption data for 

individual VMs, trends in energy usage can be inferred from 

resource utilization metrics to compute operational emissions 

as part of the SCI score. The preliminary study is carried out to 

demonstrate how to estimate energy consumption in VMware, 

simply focusing on resource utilization of CPU and memory. 

A. Data Gathering 

The data of CPU and memory usage were collected from the 

VMware vSphere system, including allocated resource 

reservations and host energy consumption. The data were 

collected daily between 00:00:00 and 23:59:59, starting from 

October 22, 2024 to October 29, 2024. The data captured logs 

were packed in Parquet format, and separated into an individual 

file per day.   

B. Power Consumption Estimation 

Using the daily log data, the computation starts from 

dividing power consumption into three components: 

• Idle state− The energy consumption during idle state is 

approximated by the minimum power consumption 

observed on a daily basis. It is assumed that there are off-

peak periods during the day when the VM operates at 

minimal capacity or remains idle. During these times, 

energy consumption is expected to be at its lowest. 

Therefore, the minimum recorded power consumption, 

Min(Power Consumption), is used during the idle state. 
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• Beyond boundary of gathered data− Since the time frame 

of 24-hour is adopted, the data will be collected within a 

24-hour period. However, when gathering data, it is 

common to encounter issues such as missing values at 

the exact start (00:00:00) or end (23:59:59) of the day. 

To address this issue, the LOCF/B (Last Observation 

Carried Forward/ Backward) method is applied to fill in 

the missing data points. For example, let (T0, P0) and 

(T24, P24) denote the power consumption P0  and P24 at 

time 00:00:00 and 23:59:59, respectively. Suppose the 

starting time data available for gathering at (T5, P5), and 

ending at (T17, P17), we then substitute P0 and P24 with P5 

and P17, respectively. Inferring missing data by LOCF/B 

is reasonable. The missing values normally occurring at 

the start and the end of the 24-hr time frame could be 

considered a short period around 0-5 minutes that the 

levels of power usage would not significantly differ. 

Therefore, rather than filling the missing value with zero, 

the alternative of LOCF/B is preferable. 

• Within boundary of gathered data− For the intervals of 

available data, the computation with linear weighting is 

used to account for variations in energy usage over time. 

The method of trapezoidal integration is applied to 

estimate the energy consumed during each interval. The 

area under the power curve (area of Isosceles Trapezoid) 

is computed as the sum of a rectangular area and a 

triangular area, as in (4). 

𝐸 =  𝐴𝑟𝑒𝑐𝑡 +  𝐴𝑡𝑟𝑖             (4) 

where 

E     = total energy consumption 

Arect = rectangle area, determined by the minimum power 

consumption (Pmin) and the time interval width (Δt) 

Atri = triangle area, determined by the difference in power 

consumption (Pdiff) and the time interval width (Δt) 

 
Fig. 1. Trapezoidal integration for energy usage estimation. 

 

Fig. 1 illustrates the diagram of trapezoidal integration 

applied for estimating energy consumption of gathered data 

within a certain time interval. The notion can be aggregated for 

the entire day to compute the total energy consumption. 

For example, given the data of power usage at 06:00:00 and 

09:00:00 represented by (T6, P6) and (T9, P9), respectively, the 

energy consumption for this interval is calculated as in (5) and 

(6). 

𝐴𝑟𝑒𝑐𝑡 =  𝑀𝑖𝑛 (𝑃6, 𝑃9)  × (𝑇9  −  𝑇6) (5) 

𝐴𝑡𝑟𝑖 = |𝑃9 − 𝑃6| ×
(𝑇9− 𝑇6)

2
               (6) 

The fact that either 𝑃1 < 𝑃2 or 𝑃1 > 𝑃2 , the summation of 

power usages denoted by the rectangle and triangle areas can be 

simplified as following.  

 
The power usage of each interval is then simplified as in (7). 

𝐸 =
𝑃2+𝑃1

2
 ×  (𝑇2  −  𝑇1)                        (7) 

The daily energy consumption can then be aggregated from 

each interval as in (8). 

𝐸 = ∑
𝑃𝑘+𝑃𝑘+1

2
 ×  (𝑇𝑘+1  −  𝑇𝑘)𝑛−1

𝑘=0         (8) 

C. Demonstration 

The daily energy consumption for each VM is calculated 

using trapezoidal integration for each time interval. An example 

is shown in Fig. 2, demonstrating the process of calculating 

power consumption within a 24-hour timeframe using sample 

data points. The day is divided into 24 time points, with data 

collected at 7 specific points. After filling in the missing data at 

time 0 and 24, as shown in Table I, the trapezoidal integration 

formula (8) is applied to calculate the energy consumption for 

each interval. The results of these calculations are presented in 

Table II. 
 

TABLE I. Sample and filled data for 24-Hour period. 

Time (hr)  Energy (W) 

0 275 

5 275 

6 300 

9 245 

10 260 

11 200 

15 220 

17 245 

24 245 

 

TABLE II. Power consumption calculation using Trapezoidal integration. 

Time 

(hr) 

Power 

(Watt) 
Interval Formula 

Energy 

(Watt) 

0 275 0-5  275 x (5 - 0) 1375 

5 275 5-6 (275+300)/2 x (6 - 5) 287.5 

6 300 6-9 (300+245)/2 x (9 - 6) 817.5 

9 245 9-10 (245+260)/2 x (10 - 9) 252.5 

10 260 10-11 (260+200)/2 x (11 - 10) 230 

11 200 11-15 (200+220)/2 x (15 - 11) 840 

15 220 15-17 (220+245)/2 x (17 - 15) 465 

17 245 17-24 245 x (24 - 17) 1715 

24 245    

Total    5982.5 
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Fig. 2. Trapezoidal integration for computing power consumption in 24hr-time frame.  

 

D. VM Power Consumption Allocation 

With respect to Hypervisor technology behind virtualization 

or decoupling of hardware from software, IT administrators can 

create multiple virtual machines on a single host machine. 

When calculating the power consumption of individual Virtual 

Machines within a host, it is essential to allocate the total power 

consumed by the host proportionally among the VMs based on 

their resource utilization. The notion ensures that each VM is 

responsible for its share of the power used, accounting for both 

idle and active states of the host: 

• Idle power consumption represents the power consumed 

when the host is in an idle state, with none or minimal 

activity from the VMs. The power is evenly distributed 

among all VMs, regardless of their activity levels, to reflect 

the shared responsibility of maintaining the host's baseline 

operation. 

• Surplus power consumption represents the power consumed 

beyond the idle state, caused by the active utilization of 

resources by the VMs. This surplus power is allocated based 

on the proportional utilization of CPU and memory by each 

VM. 

E. Resource Utilization Ratio 

The hypervisor allocates the underlying physical computing 

resources such as CPU and memory to individual virtual 

machines as required. To allocate surplus power fairly, a 

resource utilization ratio is calculated for each VM. This ratio 

is derived from the VM's share of total CPU and memory usage 

as in (9). 

  𝑅𝑎𝑡𝑖𝑜 =  0.5 ×  (  
𝑈𝑐𝑝𝑢

𝛴 𝐻𝑐𝑝𝑢
 ) +  0.5 ×  (  

𝑈𝑚𝑒𝑚

𝛴 𝐻𝑚𝑒𝑚
 )       (9) 

where 

Ucpu = CPU resources allocated to the VM, 

Umem = memory resources allocated to the VM, 

ΣHcpu = Sum of CPU allocations for all VMs on the host,  

ΣHmem = Sum of memory allocations for all VMs on the 

host. 

The formula weights CPU and memory utilization equally 

(50% each). Adjustments can be made to the weights depending 

on the importance of these resources in specific scenarios. 

Suppose the host machine consists of three VMs, each of 

which is allocated the resources as below: 

• VM1 with CPU=100, Memory=50 

• VM2 with CPU=200, Memory=250 

• VM3 with CPU=300, Memory=150 

The total CPU and memory allocations are 600 and 450, 

respectively. The ratio of resource utilization of each VM can 

be computed as shown in Table III. 

 
TABLE III. Summary of the ratios of resource utilization of each VM. 

VM CPU Memory 
Total  

CPU 

Total  

Memory 

CPU  

Utilization 

(%) 

Memory  

Utilization 

(%) 

Ratio 

(%) 

VM1 100 50 600 450 16.67 11.11 13.89 

VM2 200 250 600 450 33.33 55.56 44.45 

VM3 300 150 600 450 50 33.33 41.66 

 

The allocation of power is divided into two categories: idle 

power and surplus power. Idle power is evenly distributed 

among all VMs, as every VM shares the responsibility for 

maintaining the host's baselined operations, no matter active or 

idle status. It is assumed that even inactive, the VMs contribute 

to maintaining the host's operational requirements. Surplus 

power, on the other hand, is allocated based on actual resource 

utilization, such as CPU and memory usage due to active 

operations. Each VM's resource utilization reflects individual 

activity level, ensuring a fair, usage-dependent distribution. 
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Suppose the host consumes 400 watts, dividing into 300 

watts consumed in the idle state and 100 watts as surplus energy 

beyond the idle state. The energy reported in the idle state will 

be evenly distributed across each VM, while the surplus energy 

will be allocated based on the utilization ratios from Table III. 

The power consumption allocated for each VM are summarized 

in Table IV. 

 
TABLE IV. Summary of power consumption allocation for each VM. 

VM Ratio (%) 

Idle 

Power 

(Watt) 

Surplus 

Power 

(Watt) 

Total 

Power 

(Watt) 

VM1 13.89 100 13.89 113.89 

VM2 44.45 100 44.45 144.45 

VM3 41.66 100 41.66 141.66 

Total 100 300 100 400 

 

Fig. 3 illustrates the power consumption of a host ranging  

from October 22 to October 29, 2024. The chart daily reported 

the statistical values including min, max, and average. 

 

 
Fig. 3. Visualization of power consumption of a host during 8 days.  

F. Operational Emissions  

Once the VM energy consumption has been estimated, the 

Operational emissions (O), part of SCI score, can be calculated.  

Suppose the energy consumption of a VM in a day is 10 kWh, 

and the Emission Factor (EF) of Electricity, grid mix [9] is 

0.499 kgCO₂/kWh. The derived value of Operational emissions 

equals 10 × 0.499 = 4.99 kgCO₂. 

IV. CONCLUSION  

This research presents a method for estimating Operational 

emissions and distributing host-level power consumption 

across individual VMs based on weighted utilization factors. In 

the early stage, the work has simply focused on the resource 

utilization of CPU and memory. The proposed method seems 

promising for approximating energy consumption in VMware 

environments. The full-blown stage of study would support 

sustainability goals by optimizing energy usage and reducing 

the carbon footprint in virtualized infrastructures.   
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