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Abstract—This paper proposes the development of a noise-robust 

CNN network for the detection and classification of highly noisy 

socket image data. Manually inspecting and identifying all surface 

defects on sockets amidst noise in a manufacturing environment is a 

significant challenge. Noisy data can greatly impair the performance 

of systems in computer vision applications. A common approach is 

sample selection, which involves choosing clean data from a noisy 

dataset; however, this method is not feasible in this context, where 

noise is present in all image data. Consequently, we suggest a novel 

and effective method that, in contrast to most existing methods, 

involves training a deep learning model with noisy data. Our 

experiments across multiple benchmarks demonstrate the state-of-

the-art performance of our method and its enhanced noise-robust 

capabilities. The proposed model can successfully detect various 

socket defects in the presence of noise with 96% accuracy, which can 

help mitigate the costs associated with microprocessor defects on the 

production floor. We hope this article will assist researchers in 

selecting new techniques that effectively address surface defect 

detection. 
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I. INTRODUCTION  

In the contemporary manufacturing landscape, the 

microprocessor industry is a critical contributor to human 

development. The processor socket, a vital electronic 

component, serves to connect the processor to the underlying 

printed circuit board (PCB), offering both electrical 

connectivity and mechanical support. However, during the 

intricate manufacturing process of processors, sockets are 

susceptible to various issues such as contamination by foreign 

materials, dented or burnt contact pins, cracks, and other 

minor defects. To preserve the yield and quality of the 

product, detecting all potential surface defects on sockets is 

imperative. 
The current method of manual inspection is inefficient and 

time-consuming, particularly as sockets become smaller with 
an increasing density of contact pins. Moreover, detecting 
minuscule defects is challenging amidst environmental noise, 
often leading to incorrect defect identification. While 
traditional image processing-based methods have shown 
satisfactory accuracy in research settings, they often fall short 
in real-world applications. These methods typically depend 
heavily on the designer's expertise and are sensitive to 
environmental noise. To address these issues, Gaidhane et al. 
[1] introduced an effective approach to measure the similarity 
between a scene image and a reference image without the need 
for feature extraction, allowing the system to be more tolerant 
of misalignment, noise, and varying illumination. However, 

this method requires the constant availability of reference 
images and is not suitable for universal application. 

As computational power and data science have advanced, 
deep learning (DL) and convolutional neural network (CNN) 
algorithms have become increasingly popular for detecting 
defects on printed circuit boards (PCBs). CNNs are 
particularly effective as they learn to identify surface defects 
by analyzing training samples, moving away from the feature 
design required by traditional manual classification methods. 
Object detection involves identifying objects of interest within 
an image, classifying them, and pinpointing their location. 
There are two main types of detection networks: one-stage 
networks like Faster R-CNN, which prioritize speed, and two-
stage networks like SSD and YOLO, which are known for 
their accuracy. Tang et al. [2] developed a PCB surface defect 
detection system using YOLOv5, which was enhanced with 
better-suited anchors for the dataset and an additional layer for 
detecting small targets, achieving 95.97% mean average 
precision (mAP) at 92.5 frames per second (FPS). However, 
this method requires specific complex hardware for rapid 
detection. Zhao et al. [3] found that ShuffleNetV2-YOLOv5 
outperformed other lightweight models like YOLOv3-tiny and 
YOLOv4-tiny in accuracy, but its performance was limited by 
the amount of available data. Gao et al. [4] used a compressed 
version of YOLOv5 for PCB defect detection, which increased 
speed by 53.4% and reduced the model size by 72.5% 
compared to the original model, though its simplicity has yet 
to be tested on industrial equipment. Yang et al. [5] enhanced 
a model based on YOLOv8 to better detect small targets in 
complex scenes, surpassing Faster R-CNN and SSD in 
detection capability, but the model is slower and requires 
accuracy improvements. Other studies have also explored 
defect detection methods based on YOLOv5, but they face 
challenges with accuracy and the need for a large volume of 
labeled data [6-7]. 

For one-stage algorithms, Lei et al. [8] introduced a 
reliable and lightweight adaptive CNN with confidence gate 
learning designed to handle noise at a low computational cost. 
While this model is fast, it requires enhancements in 
efficiency. Wu et al. [9] developed an end-to-end efficient 
model (EEMNet) featuring a novel attention mechanism that 
captures global dependencies without incurring extra 
computational costs. This model achieved 99.1% accuracy at 
77 FPS, but its applicability to industry-specific defects has 
not been fully validated. Hu et al. [10] enhanced the Faster R-
CNN with a feature pyramid network, achieving mAP of 94.2 
and a detection speed of 0.08 seconds per image, making it 
suitable for production use. 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 

 

 

57 

 
Thanh Hoang Hao Nguyen and Viet-Hong Tran, “Training Noise-Robust Deep Neural Networks for Socket Defect Detection,” 

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 7, Issue 3, pp. 56-60, 2024. 

While deep learning-based detection algorithms have 
attained high accuracy, the microprocessor industry's need for 
precise and noise-resistant socket surface defect detection 
means these algorithms require further refinement. To address 
this, a deep learning-based detection network has been 
designed to improve model accuracy and enhance noise 
robustness. Section 2 of this paper will review the theoretical 
background and techniques employed in this research, 
including model training and optimization methods. Section 3 
will detail the research activities, and the subsequent section 
will discuss the results in comparison to other studies. The 
paper concludes in Section 4 with recommendations for 
ongoing research. 

II. METHODOLOGY 

A. Image dataset 

To acquire a high-quality image dataset, the high-
definition digital microscope "EVOCAM II" was utilized, 
capturing images at a resolution of 1920 x 1080 with an 
optical magnification level between 10 and 12. The 
microscope's coaxial LED light source provided adjustable 
illumination intensity to prevent issues such as reflection, 
overexposure, and underexposure. The equipment used in this 
experiment is depicted in Fig. 1. 

 
Fig. 1 Image acquisition device 

 
The sockets examined in the experiment contained 

hundreds of contact pins. To create the dataset, a contour-
based shape detection method using the Hough transform was 
employed. This method is commonly used to identify 
geometric shapes in images and was applied to detect the 
circular shapes of the socket pins. Subsequently, images of the 
individual socket pins were cropped from the larger board 
images.  

 
Fig. 2 ROI extraction by Hough transform 

 

The resulting images had a resolution of 1920 x 1080, with the 

contact pins averaging 40 x 40 pixels in size. The dataset 

comprised a total of 749 images, with 582 normal (positive) 

samples and 167 defective (negative) samples. To address the 

issue of imbalanced samples, the original images were 

enhanced to increase the number of negative samples. The 

negative sample count was augmented to 582 through random 

center cropping, flipping, and rotation, thus balancing the 

dataset between positive and negative samples. The dataset 

was then divided into training, validation, and test sets in an 

8:1:1 ratio, with the number of images in each set detailed in 

Table I. 

 
TABLE I.  ACQUIRED SAMPLES AND THEIR DIVISIONS 

Dataset Training Validation Testing Total 

Positive 466 58 58 582 

Negative 466 58 58 582 

B. CNN model and transfer learning 

DL is employed to create advanced vision systems capable 
of perceiving and making predictions from raw data inputs. It 
has become a frontrunner in computational vision due to its 
ability to learn directly from raw data. Unlike traditional 
methods, which rely on manual feature extraction informed by 
prior knowledge and are less robust against noise. CNNs are 
adept at autonomously learning the filters needed to 
effectively extract features, making them a leading technique 
for image feature extraction within the realm of image 
processing. 

Over the past few decades, advancements in data science 
and computing power have significantly enhanced DL as a 
method for object detection and classification. However, DL 
neural network training typically requires a large dataset. 
Starting training from scratch is resource-intensive and may 
yield suboptimal results if the dataset is too small. Transfer 
learning offers a promising solution to this challenge by 
utilizing pre-existing knowledge from related domains to 
boost performance in the target domain. 
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Fig. 3 Overall flow chart of our method 

 

In this study, images of actual sockets were used to fine-
tune a network by adjusting the weights of a pre-trained 
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model, thus avoiding the need to train from scratch. We 
employed a pre-trained fully connected network (FCN) with a 
dataset from a source domain. Transfer learning can be 
approached in three ways: fine-tuning the entire network (1), 
freezing the initial layers and fine-tuning the latter layers (2), 
and freezing the initial layers while training the latter layers 
from scratch (3). Using pre-trained models can significantly 
cut down on training time. This study will evaluate various 
CNN architectures for the classification task, including 
AlexNet, EfficientNet-B1, DenseNet201, and ResNet18. The 
goal is to select a lightweight network architecture that offers 
high recognition accuracy, which can later be optimized for 
real-time performance and cross-platform deployment. 

C. Noise robust training and testing 

CNN models are developed using trained models and 
ImageNet datasets. To create a noise-robust model, this study 
utilized images from the original dataset and introduced 
various types of noise, including motion blur, salt and pepper, 
and Gaussian noise, defined as follows: 

Motion blur reduces image clarity and sharpness, often 
occurring when the camera captures an image of a moving 
socket. 

Salt and pepper noise is characterized by the random 
presence of black and white pixels, resembling the appearance 
of scattered salt and pepper grains. 

Gaussian noise, also known as Gaussian white noise, 
follows a normal distribution in its probability density 
function (pdf). 

The model training was conducted over 50 epochs with a 
learning rate of 0.001, using the Cross Entropy loss function 
and Adam optimizer. Implemented an early blocking method 
with a retention setting of 3 and a minimum of 0.001 for credit 
loss. The training aimed to minimize validation loss or 
observe a downward trend in it. Training would be terminated 
if there was no improvement in reducing validation loss. 
During the testing phase, both the noise-robust and original 
models were evaluated on the test sets to obtain defect 
detection results for performance comparison. 

III. RESULTS AND DISCUSSION 

The experimental setup was configured as follows: The 

system ran on Windows 11 64-bit operating system, powered 

by an Intel Core i7-10610U CPU with speeds ranging from 

1.80GHz to 2.30GHz, and was equipped with 16GB of RAM. 

The proposed algorithm, along with others used for comparison 

in this study, were executed using the PyTorch framework. To 

assess the effectiveness of the proposed models in detecting 

socket defects, their detection accuracy was compared against 

models using AlexNet, EfficientNet-B1, DenseNet201, and 

ResNet18. Evaluation metrics such as recall, accuracy, 

precision, and the F-measure were employed to compare the 

detection accuracy among the different algorithms. 

A. Dataset acquisition 

The socket inspection was conducted by skilled 
professional quality inspectors. Afterward, the socket image 
was saved on the computer drive, and the region of interest 
(ROI)—comprising the individual socket pin and its 
surrounding area—was extracted as shown in the figure. These 

images served as the input images with a resolution of 40 x 40 
pixels. 

Most of the pre-trained models available in torchvision 
(the latest version) include the line self.avgpool = 
nn.AdaptiveAvgPool2d((size, size)), which addresses any 
incompatibility issues with input sizes that differ from the 
224x224 pixels used for training on the ImageNet dataset. 
Therefore, there were no concerns regarding the input size 
being different from the standard size used during ImageNet 
training. The subsequent step involved labeling each image as 
either a defective sample (bad) or a non-defective sample 
(good). 

B. Evaluation indicators 

In this study, the performance of the model was evaluated 
using standard evaluation criteria such as accuracy, precision, 
recall and F1 score. Accuracy measures the ratio of true good 
predictions out of all good predictions made by the model. A 
high precision indicates that the model is accurate in 
predicting positive samples. Accuracy reflects the overall 
correctness of predictions, comparing the number of correct 
predictions to the total number of predictions made. Recall 
assesses the proportion of true positive predictions out of all 
actual positive samples; a high recall signifies a low false 
negative rate, meaning the model effectively identifies 
positive samples. The F1-score, a widely used evaluation 
metric, is calculated by harmonizing precision and recall. The 
formulas for these metrics are as follows: 
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Where TP represents true positives, TN represents true 
negatives, FP stands for false positives, and FN denotes false 
negatives. In the context of this study, a good sample is 
considered a positive instance, and a bad sample is considered 
a negative instance.  

C. Experimental results 

During the experiment, the performance of the proposed 
methods was compared across AlexNet, EfficientNet-B1, 
DenseNet201, and ResNet18, as shown in Table II. All models 
were pre-trained on the ImageNet dataset and then fine-tuned 
on the same target domain dataset. AlexNet achieved the 
highest training and validation accuracy and had the shortest 
execution time among the models tested. Specifically, the 
AlexNet model excelled in classification performance, with 
precision, accuracy, recall, and F1-score of 95%, 96.6%, 
98.3%, and 96.6%, respectively. Consequently, the AlexNet 
model was selected for further evaluation. 

The AlexNet architecture is adept at extracting detailed 
information from images, making it well-suited for our 
classification task. Fine-Grained Image Classification (FGIC) 
involves recognizing subtle distinctions between closely 
related categories, such as different car models or bird species. 
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Our task, which required finely categorizing socket pins as 
good or bad, falls under FGIC. In summary, while ResNet, 
EfficientNet, and DenseNet are preferred for more complex 
tasks that require learning intricate patterns due to their deeper 
architectures, AlexNet is more appropriate for simpler tasks. 

 
TABLE II.  COMPARISON OF EVALUATION METRICS AMONG MODELS  

Dataset Precision Accuracy Recall F1-Score Time 

AlexNet 95% 96.6% 98.3% 96.6% 6s 

EfficientNet 92.7% 90.5% 87.9% 90.2% 34s 

ResNet 92.6% 89.7% 86.2% 89.3% 17s 

DenseNet 93.1% 93.1% 93.1% 93.1% 78s 

 

 
Fig. 4 Classification result example 

 
TABLE III.  COMPARISON OF EVALUATION METRICS AMONG MODELS  

Noise Source Precision Accuracy Recall F1-Score 

No noise 95% 96.6% 98.3% 96.6% 

Motion blur 70.7% 79.3% 100.0% 82.9% 

Salt & Pepper 100.0% 74.1% 48.3% 65.1% 

Gaussian 77.3% 85.3% 100.0% 87.2% 

D. The performance of model against different noises 

The evaluation metrics of original model for four image 
categories are presented in Table III. The model's accuracy was 
significantly impacted by the salt & pepper noise category, 
resulting in an accuracy of 74.1% and an F1-score of 65.1%. 
The low recall of 48.3% indicates that salt & pepper noise 
caused confusion in the model, leading to the misclassification 

of actual good samples as bad. Conversely, Gaussian and 
motion blur noise did not affect recall as much but did reduce 
the model's accuracy to 79.3% and 85.3%, respectively. These 
results suggest that the original model is susceptible to noise 
and requires improvements to better cope with environmental 
conditions. 

To combat the model's instability and inaccurate 
classification in challenging environments, the noise-robust 
model was tested with similar testing set incorporated the three 
mentioned types of noise. The evaluation metrics of the 
improved network are illustrated in Fig. 5. 

In conclusion, the robust-noise network showed improved 
classification performance when exposed to different types of 
noise, with accuracy consistently above 90%. This indicates 
that the proposed model possesses robustness and adaptability 
in the presence of background noise. 

IV. CONCLUSION 

In this study, we designed a noise-robust CNN network 

tailored for the detection and classification of surface defects 

on sockets, achieving a high detection accuracy as 96.6% and 

F1-score 96.6%. The model demonstrated its ability to handle 

noise through specialized noise-robust training and testing. 

Our approach diverges from most existing methods by training 

the deep learning model with noisy data. The proposed model 

was able to aid in the reduction of microprocessor defect costs 

on the production floor. We hope this article will assist 

researchers in selecting new techniques for effective surface 

defect detection.  
However, this work had limitations, including a focus on 

classifying sockets as good or defective without detailing 
specific types of surface defects. The limited image dataset 
constrained the model's performance and accuracy. The 
hyperparameters were predetermined and have not been 
validated as the optimal values for peak model performance. 
Future studies will investigate more specific defect types, such 
as burns, scratches, stains, and contamination, to train and 
evaluate the model further. Additionally, future research 
should strive to improve the performance of pre-trained CNN 
models to achieve higher accuracy and minimize false alarms. 

 

 
Fig. 5 Compared classification result example 
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