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Abstract—The morphological and anatomical anomalies of in vitro 

rooted plants during micropropagation, like the absence of functional 

stomata, poorly developed cuticle and weak root system subject the 

plantlets to desiccation. Efforts made to improve these characteristics 

by controlling the stressful culture conditions greatly contributes to 

better rooting and acclimatization of the tissue culture grown 

plantlets. Introduction of ex vitro rooting during micropropagation 

overcomes these limitations. Since ex vitro rooting and 

acclimatization were done at the same time, gradual adaptation to 

the external environment, transition of the root system from a non-

functional structure to a functional one, and finally habituation of 

plantlets to ambient relative humidity and light irradiance takes 

place simultaneously. Ex vitro rooting simplifies micropropagation 

protocol, reduce labour, production cost and helps in the easy 

adaption of scientific technology from lab to land. 

 

Keywords— Acclimatization, ex vitro rooting, in vitro rooting, 

micropropagation. 

I. INTRODUCTION  

In the early days of micropropagation, in vitro rooting was 

the general method used for obtaining plantlets, but in the 

present scenario ex vitro rooting is used in commercial 

laboratories as it eliminates one culture stage and reduces the 

overall cost of micropropagation [1,2,3,4,5]. Roots of plantlets 

produced in vitro are usually very weak and without root hairs 

[6]. The anatomical, morphological and physiological 

characteristics of the in vitro developed micro shoots, for the 

majority of the woody species, have a great impact on 

subsequent rooting and survival after transfer to greenhouse 

conditions. During the early acclimatization period, the roots 

do not function normally to support the plants in uptake of 

water and nutrients. In the rehabilitation phase, it is necessary 

to improve the root system, not only for strong growth due to 

the strong absorption of water and nutrients, but to replace the 

water loss of the shoots. Any effort to improve these 

characteristics by controlling the stressful culture conditions 

undoubtedly contributes to better rooting and acclimatization 

of the plantlets. The acclimatization process will begin while 

the microplants are still under in vitro conditions. Since ex 

vitro rooting and acclimatization were done at the same time, 

gradual adaptation to the external environment, a transition of 

the root system from a non-functional structure to a functional 

one, and finally habituation of microplants to ambient relative 

humidity and light irradiance takes place simultaneously [7,8]. 

Microshoots can be rooted in two ways [9]. In complete in 

vitro rooting auxins were mixed into the medium for the 

whole culture period, while in the ex vitro experiment the 

micro shoots were dipped exclusively in auxin solution for a 

short period and directly planted in potting mix. Roots 

produced by ex vivo rooting were more branched than roots 

produced by auxin supplementation in the culture medium. 

Furthermore, during in vitro rooting, auxins can be photo 

oxidized by exposure to light (Fig.1). When auxins are applied 

continuously, that is even after root induction it promotes 

callus formation and inhibits the outgrowth of the root 

primordia [10].  

II. IN VITRO ROOTING - LIMITATIONS 

Rohr et al. (2003) discussed the morphological and 

anatomical anomalies of in vitro rooted plants, like the 

absence of functional stomata, poorly developed cuticle and 

weak root system subject the plantlets to desiccation [11]. The 

direct transfer of in vitro developed plantlets from in vitro to 

glasshouse conditions results in 100% mortality in cork oak 

[12] and 50% in Albizia amara [13]. Weitz et al (1989b) 

performed physiological studies on Camellia japonica roots 

grown on agar and soil and found that soil-grown roots had 

higher trace elements than agar-grown roots, probably due to 

the thickening of the cell walls and the accumulation of 

phenolic compounds [14]. In vitro produced roots lack good 

vascular connection, develop weak casparian strips, and the 

absence of phi-thickenings, which promotes a limited water 

transport to aerial parts of the plantlets [15,16,17,18]. In vitro 

formed roots struggle hard to adapt to the new environment 

and undertake diverse changes during the acclimatization of 

micropropagated plants. Under in vitro conditions, the basal 

part of the stems, where the roots are being formed, is stuck 

into the medium which prevents easy exchange of gases 

leading to accumulation of gases (ethylene and CO2) and 

partial anerobiosis. Ethylene is also inhibitory during root 

induction phase, possibly because it interferes with the 

establishment of polarity in the meristem [19].  

III. EX VITRO ROOTING - ADVANTAGES 

Roots grown under ex vitro conditions, exhibit well-

defined phloem and xylem vessels in the vascular cylinder at 

the maturation zone, casparian strips in both endodermis and 

exodermis, and phi-thickenings in the cell walls of the cortex 

close to the endodermis. These characters match with a 

functional structure able to supply water and selective 

nutrients to the aerial part of the plant by blocking the 

apoplastic transport [20]. On the other hand, ex vitro roots are 

formed in an opaque and well-aerated substrate without any 

external source of sugar and nutrients, therefore, roots are 
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dependent on the shoot to obtain the necessary nutrients and 

energy to grow. In return, water uptake from the roots 

accelerates and water flows to the branch. The ex vivo results 

are good for the yield and adaptation of Rhododendron species 

[21,22]. Scarpa et al. (2000) mentioned that direct rooting of 

Myrtle plantlets in soil has a high survival rate compared to in 

vitro rooting [23]. Ex vitro rooting of micropropagated shoots 

of Rhododendron ponticum resulted in a higher survival rate 

of the plantlets during the acclimatization period than that of 

in vitro rooting [24].  

 

 
Figure 1: Schematic representation of in vitro and ex vitro rooting during micropropagation 

 

 
Figure 2: Comparitive studies between  In vitro and Ex vitro Rooting during micropropagation 
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Ex vitro rooting was applied to simplify the 

micropropagation protocol and to reduce production costs. It is 

a promising method as there is a reduction in cost by avoiding 

the in vitro rooting culture stage, reduction in labour, and the 

time of establishment from laboratory to soil (Fig.2). Thus, 

acclimatization and hardening could be accomplished as a 

one-step procedure within a short period before 

transplantation. Many commercial laboratories avoid complete 

rooting in vitro, because of intensive labour and high cost, and 

prefer rooting ex vitro in inert substrates or rooting plugs 

[25,26,27]. Thus, attempts made to economize and simplify 

the micropropagation technique could help in the easy 

adoption of scientific technology from the lab to land.  

A. Combination of Both In vitro and Ex vitro Rooting: 

Contrary to complete in vitro and ex vitro rooting, a 

combination of both is used which is root induction in vitro 

followed by root development ex vitro. Today, the trend is to 

avoid the whole rooting process in vitro; instead of this, the 

practice is at a first step to induce  root primordia in vitro and 

at a second step to promote extensive rooting ex vitro [28,29]. 

Debergh et al. (2000) reported that micro-cutting of many 

woody plants can be transferred to greenhouse conditions with 

only root primordia as planting becomes more convenient, and 

can even be easily automated [30]. Fabbri and Bartolini (1985) 

established that it is important to transfer shoots to the 

acclimatization substrate before roots emerge because roots 

developed in vitro are structurally different from those 

developed in soil [31].  

IV. FACTORS INFLUENCING EX VITRO ROOTING 

The response of stem cuttings for rhizogenesis is 

dependent upon the plant material ontogenetic age, the size of 

microshoots, the auxin nature, the contact duration, and its 

application time [32]. Other factors that influence the planting 

of mechanical cuttings include relative humidity, light 

conditions and the type of treatment equipment.  

4.1. Auxins: 

4.1.1. Auxin Treatment:  

The success of the transplant and the survival of the plants 

depend greatly on the quality of the roots. Auxins can be 

applied to the shoot explants in different ways which include,  

dipping the basal ends of shoots in high concentrated auxin 

solution (or) auxin powder for a short period. Auxin may be 

applied for several days or weeks at a low concentration 

(micromolar range), or for several seconds or minutes at a 

high concentration (millimolar range) [33]. It can also be done 

by saturating the potting mix/ inert substrate with auxin 

solution. Most of the ex vitro rooting techniques are based on 

rooting the shoots by dipping them in a concentrated solution 

of auxin and subsequently planting them directly in the potting 

mix. The roots formed by dipping were more branched than 

the ones resulting by auxin addition to the culture medium.  

The process of adventitious root formation can be divided 

into at least two developmental stages: the initiation of 

primordia following cutting or wounding, and the stage of root 

emergence and growth. It is considered that in the first stage 

auxin acts as gene activator, i.e., triggers the early formation 

of root primordia. Auxin enters cuttings predominantly via the 

cut surface, and the addition of auxin immediately after 

cutting initiates the first cellular divisions and formation of 

root primordia [10]. For root elongation, exogenous auxin is 

usually not required or is even inhibitory [34]. High auxin 

concentrations are necessary only for the first stages of 

histogenesis as they can inhibit the outgrowth of root 

primordia, growth of roots, and growth of cuttings [35,36]. 

When the auxins are added at too lower doses rhizogenesis is 

not stimulated and some times even retarded [29].  Further in 

the rooting region excessive induction and proliferation of 

new roots is blocked by inhibitors formed in the tips of 

growing roots themselves [37] and it was also shown that not 

all primordia initiated after auxin treatment develops into 

emergent roots [38].  

4.1.2. Choice of Auxin:  

Most reports of adventitious root induction of woody 

species have involved treatment with exogenous auxin such as 

IBA, NAA, IAA [39,40]. Heloir et al.(1996) reported 

successful germination of walnut shoots with exogenous auxin 

[41]. The three auxins IBA, NAA, IAA exhibit differential 

stability. Nissen and Sutter (1990) have shown that in tissue 

culture media IAA is photo-oxidized rapidly (50% in 24h) and 

IBA slowly (10%) [42]. NAA is very stable [43]. The three 

auxins work differently as they have different affinities for 

auxin receptors, differences in uptake, transport, and 

metabolism [44]. Selection of the auxin type and optimization 

of its concentration results in a differential response in root 

induction [45]. However, the actual concentration of free 

auxin in the cells from which the roots develop does not 

reflect concentrations of the three auxins in the medium [46]. 

Since NAA is not destroyed by auxin-oxidase, it might be the 

preferable auxin in crops with a high activity of auxin-oxidase, 

in particular when the auxin is only applied as a short initial 

treatment [10]. De-Klerk et al. (1997) and Peeters et al. (1991) 

found that the rate of auxin uptake varied [44,47]. They 

observed that NAA uptake was six times faster than IAA, and 

Vander Krieken et al. (1993) found that IBA uptake was four 

times faster than IAA [48]. 

Martin (2003) reported the survival of 75% of Rotula 

Aquatica micro shoots [4] in the soil after auxin dip using 0.5 

mg/1 NAA. In Albizia amara of the different auxins tested 

maximum root induction (92%) was achieved when shoots 

were dipped in 60mg/l NAA for one hour [29]. Similar 

observations of high auxin dip using NAA was found 

beneficial by a few workers in woody species such as Rotula 

aquatica [4], R. ponticum [24] and oil palm [49]. The in vitro 

yield of tea microshoots treated with IBA was successful at 

the split ends [50, 51]. IBA (500 mg/l for 30 min) was used for 

treating the cut ends of tea shoots before transfer to soil mix in 

Hikko trays [52, 53]. Enhanced rooting was observed in Green 

Ash shoot-tip explants treated with a 15-seconds  dip in 1 mM 

IBA [54]. Bates et al. (1992) observed 80% ex vitro rooting of 

micropropagated White Ash shoots after a quick dip in 1 mM 

IBA [55]. The rooting rate was increased to 91.7 % when 
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Iranian Myrtle micro shoots were subjected to auxin dip using 

a solution of l.5 mg/1 IAA + 0.31 mg/1 IBA [5]. Dipping in a 

solution of 1 g l-1 IBA increased 94 % rooting of R. ponticum 

[24]. 

4.2. Size of Microshoots: 

The genetic background and the physical form of the 

mother plant and the size of the plant taken for rooting are 

important in the interaction with hormones and environmental 

conditions. Ex vitro rooting requires shoots of high quality. 

According to De Klerk (2000), the rooting process was 

divided into phases for improving the rooting treatment of 

micro-cutting [56]. During micropropagation, two opposite 

processes occur rejuvenation and maturation where plants not 

only rejuvenate but also make the opposite transition from 

juvenile to adult. When maturation prevails, the micro-cutting 

will have a low ability to root, so young shoots are preferred 

for rooting. The hormonal regulation and the factors 

controlling the phase change at the molecular level need to be 

studied deeply [57]. Microshoots of short length (2‐3 cm 

height) used in most of the ex vitro rooting experiments, as 

they result in lower production costs (shoot elongation step 

avoided), higher rooting ability, and shorter exposure time to 

pathogenic fungi [58]. Further, mini‐cuttings produce roots of 

better quality and morphology (taproot‐like) than those 

produced from macro‐cuttings using auxin dip [59,60].  

4.3. Darkness: 

Light is often considered an inhibiting factor in root 

formation of many species [61] especially at the induction 

phase of root primordia, whereas, darkness during rooting has 

a rather stimulating effect on root formation [62]. Root 

induction in continuous light was less as compared to dark in 

many reports. Darkness applied during the first week of 

rooting enhanced rooting percentage, several roots developed 

per micro-cutting and length of roots increased in several 

woody species such as apple, wild cherry, chestnut, 

rhododendron, cork oak, etc. [12,62,63]. The positive effect of 

darkness is sometimes emphasized by raising the temperature 

[29,65]. The optimal length of the dark period varies between 

3 and 10 days depending on the species and cultivars [7,8, 66]. 

Shoots kept in dark were slightly pale, thin, and lengthy 

with narrow leaves. But, they attained good growth when 

transferred to light. It has further been observed that a high 

auxin dip of micro shoots followed by few days dark 

incubation in the auxin-free medium was better in  root 

induction [67]. Druart (1997) observed that continuous 

darkness during the root induction phase, increases peroxidase 

activity resulting in high rooting rate [68]. During the first 

week of rooting, darkness combined with high temperatures 

(26-280C) followed by maximal lightening, low temperature 

and high wetness under ex vitro conditions favour 

rhizogenesis. 

4.4. Relative Humidity:  

Survival of micro shoots ex vitro depends on its ability to 

withstand water loss and carry out photosynthesis, which is 

enhanced by gradual acclimatization and hardening. Under 

in vitro conditions plantlets are grown in a small vessel in a 

closed environment and the air exchange rate between outside 

and inside is very low and the relative humidity is very high 

[69]. High relative humidity was the dominant factor for the 

condition of hyperhydricity in micropropagated plantlets [30]. 

Thus, microenvironment of the culture vessel and 

accumulation of gases such as ethylene and carbon dioxide 

was found to be responsible for hyperhydricity [70]. High 

relative humidity, makes the plantlets unable to resist water 

stress after transplanting from in vitro to ex vitro conditions.  

These hyperhydric tissues further induce hypoxia stress which 

drastically affects the plant metabolism [71]. But under ex 

vitro conditions humidity is gradually reduced by using large 

culture vessels and special closures that facilitate water loss 

there by improving the internal structure of plantlets. 

4.5. Hardening Substrates: 

The type of potting mixture used during acclimatization is 

one of the important factors determining the survival 

percentage of the plants under ex vitro conditions. During this 

stage, the plantlets change its metabolism from heterotrophic 

to the autotrophic mode and are very sensitive to external 

climatic conditions and pathogens. At the same time, 

photosynthesis is still limited and carbon balance may become 

a limiting factor because it is supported mainly by the reserves 

accumulated from the in vitro substrate. Hardening the in vitro 

raised shoots to make them adapted to the natural environment 

is a critical process due to their anatomical and physiological 

peculiarities. Physical, chemical, and biological properties of a 

potting mixture are important for the establishment of 

plantlets. 

The general methods used for ex vitro acclimatization use 

various types of containers filled with different types of 

potting mix (peat, perlite, soil, vermiculite individually or in 

optimized combination) as transplanting substrates as well as 

artificial culture areas (greenhouses, tunnels, growth rooms) 

where humidity is maintained at high levels so that plants 

grown under laboratory conditions do not dry out. 

4.5.1. Coco Peat: 

Cocopeat has been considered as a substitute for natural 

peat in potting media. The particular structure of coconut 

fibers, their physical and chemical properties, make them 

suitable for hardening. Cocopeat contains equal portions of 

lignin and cellulose and is rich in potassium and the 

micronutrients Fe, Mn, Zn and Cu [72]. Manjusha and 

Sathyanarayana (2010) recorded a survival rate of 75% for the 

stevia micro cuttings at the hardening phase on cocopeat [73]. 

Garcinia indica showed 76% survival rate when hardened on 

cocopeat as a potting mixture [74]. Sivaram and Mukundan 

(2003) recorded a survival rate of 70% for the stevia 

microcuttings during hardening phase using cocopeat [75]. 

4.5.2. Vermicompost: 

 Vermicompost was shown to be the most suitable planting 

substrate for hardening which ensured 96% survival in  

Tylophora indica [76]. Kansara et al. 2013 reported successful 

hardening in Castor using vermicompost due to the presence 

of rich organic matter providing strength and essential 

nutrients for plant survival [77]. 
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4.5.3. Vermiculite:  

Vermiculite has been used as a substrate to acclimatize 

papaya plantlets ex vitro [78,79]. Papaya shoots hardened on 

vermiculite were of better quality and more conducive to 

acclimatization [80]. Vermiculite treatments produced finer 

root systems with more lateral branches and root hairs. Yu et 

al. (2000) reported 90% rooting of Papaya on vermiculite [79]. 

The use of vermiculite containing medium improved the 

rooting of J. nigra x J. Regia hybrids and J. Regia clones [50].  

4.5.4. Rooting Plugs:  

The highest rooting and survival rate ex vitro was observed 

when Hazlenut micro shoots were cultured directly in jiffy 

peat plugs after auxin dip [81]. Improved rooting in Raspberry 

with the use of rooting plugs is perhaps attributable to 

improved aeration. Aeration was previously shown to play an 

important role in raspberry root development using foam 

substrates [82]. Rooting plugs with a liquid medium may 

provide a suitable balance between aeration and moisture 

availability (humidity) at the base of the shoot-tip explant, and 

thereby promote root initiation and development. 

4.5.5. Potting Mix Combination: 

An efficient one-step hardening technique for tissue 

culture raised orchid seedlings was reported on chips of 

charcoal, bricks, and decayed wood as an alternate substratum 

[83]. Successful acclimatization of papaya plants was reported 

using perlite, peat, polystyrene beads in a 1:1:1 ratio [84]. 

High percent plant survival rate was obtained in Banana when 

potting mixture containing soil, sand, and Farm Yard Manure 

was used in 2: 1: 1 ratio improved biological properties of the 

soil and aeration [85,86]. 

4.5.6. Float Hydroculture Using Perlite: 
Successful ex vitro rooting and acclimatization was 

achieved  in Rubus fruticosus and Rosa hybrid cultivars using 
floating cell trays [87]. This method is derived from the 
technique of acclimatization in flooded perlite taken in plastic 
trays. On the surface of the nutritive solution, there are floats 
made of polystyrene or other materials that sustain the plants 
[88,89]. The technique of rooting ex vitro in floating cell trays 
was inspired by a method used for lettuce, tomato, and 
tobacco seedlings [90,91,92]. This method  eliminates the 
necessity of using special, sophisticated installations for air 
humidification. Also this method is easy, cost effective and it 
can be done by using locally available materials without 
fertilizers and plant growth regulators. Application of perlite 
provided porosity and drainage, in the potting mix which 
stimulated the root dry mass accumulation in kiwi plants [93]. 

Thus by the use of the well-aerated potting mix, the 

formation of callus in the shoot base    will be  reduced and a 

good vascular connection with the root system was achieved 

[41] .The roots formed ex vitro in an opaque and well-aerated 

substrate without any external source of sugar are dependent 

on the shoot to obtain the necessary nutrients and energy to 

grow, so that they easily adjust to greenhouse conditions and  

show higher percent survival than in vitro rooted plants [94, 

95, 96]. 

V. CONCLUSION 

The technique of  ex vitro rooting was good  in terms of 

rooting and acclimatization as it simplifies the 

micropropagation protocol and reduces production costs. 

Successful ex vitro rooting was promoted by dipping basal 

ends of the shoots in a concentrated solution of auxin and 

subsequently planting them directly in the potting mix. The 

roots formed by dipping were more branched than the ones 

resulting by auxin addition to the culture medium. Further, 

auxins should be distinctively applied during different stages 

of root formation (induction, initiation, root emergence, and 

elongation). The effect of light and darkness has considerable 

importance during the stages of root formation, including the 

sequence of these regimes, intensity, and quality of light. 

Genetic background and physiological state of the mother 

plant and the size of the explant taken for rooting are 

important factors in the interaction with hormones. Thus all 

the environmental factors such as light quality, photoperiod, 

relative humidity, temperature, plant growth regulators, and 

substrate nutrients can have dramatic effects on rooting 

processes. 
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