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Abstract— Quantum dots, the workhorse of nanotechnology has 

attracted substantial interest for its unusual electrical and optical 

capabilities, making it a critical factor in the development of 

innovative technologies such as quantum computing and 

optoelectronic devices. The characteristics and uses of nanoscale 

materials are impacted by quantum confinement phenomena. The 

amount of these confinement effects is governed by the confinement 

energy. This work dives into the confinement features of gallium 

arsenide (GaAs) quantum dots, concentrating on the effect of their 

morphologies within the confinement regime, specifically comparing 

spherical and cylindrical configurations. Confinement regimes were 

first established, and corresponding sizes were sampled for both the 

spherical and cylindrical geometries. Wavelengths were also 

calculated for both forms. The research incorporates theoretical 

modelling, simulation, and analysis to draw relevant comparisons 

between the two forms. It further elucidates how shape impacts the 

performance of gallium-arsenide quantum dots.  
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I. INTRODUCTION  

Quantum dots are semiconductor nanoparticles with 

dimensions on the order of the de Broglie wavelength of 

electrons, leading to quantum confinement effects (Brus, 

1986, Reed 1993, Shchukin et al., 2009,). The confinement of 

charge carriers in three dimensions results in discrete 

electronic energy levels, making quantum dots distinct from 

bulk materials. In recent time, quantum dots have emerged as 

pivotal components in the realm of advanced materials, 

gaining substantial attention due to their exceptional electronic 

and optical properties (Joglekar et al., 2019; Efros and Brus, 

2021). Among the diverse array of quantum dot materials, 

Gallium Arsenide (GaAs), a group III-V binary semiconductor 

stands out as a particularly promising semiconductor, owing to 

its superior characteristics. The unique behaviour of quantum 

dots arises from quantum confinement effects, where the size 

and shape of these nanostructures play a pivotal role in 

dictating their electronic and optical properties (Brus, 1986; 

Kuno, 2005; Ornes, 2016). Shape, in particular, has been 

identified as a critical parameter influencing the behavior of 

quantum dots, with variations such as spherical and cylindrical 

configurations exhibiting distinct geometric and electronic 

attributes (Andreev et al., 1999; Billaud and Truong, 2010). 

Previous studies have extensively explored different 

aspects of quantum dots, including their size, composition, and 

surface properties (Alivisatos,1996; Saito et al., 1999; Harry et 

al., 2023). However, a nuanced comparative analysis 

specifically focusing on the influence of shape, particularly 

between spherical and cylindrical configurations of GaAs 

quantum dots, remains a research gap that this study aims to 

address. The importance of shape in determining quantum dot 

properties has been underscored in literature, with research 

indicating that it significantly affects energy band structures, 

charge carrier dynamics, and light-emission properties 

(Lozovskiy and Pyatnytsya, 2011). Consequently, a 

comprehensive investigation into the confinement effects 

associated with different shapes is crucial for optimizing the 

design and performance of GaAs quantum dots. 

The versatility of quantum dots makes them invaluable for 

applications ranging from electronics to photonics and 

quantum information processing (Kamat, 2013; Nurmikko 

2015; Montanarella, and Kovalenko 2022; Deshmukh and 

Mulay 2023) As such, a deeper understanding of how the 

shape of GaAs quantum dots impacts their behavior is 

paramount for harnessing their full potential in the 

development of cutting-edge technologies (Kongkanand et al., 

2008). This study endeavors to bridge existing knowledge 

gaps by employing theoretical modeling and numerical 

simulations to conduct a comparative analysis of spherical and 

cylindrical GaAs quantum dots, shedding light on their distinct 

confinement characteristics and potential implications for 

practical applications. 

II. SPHERICAL GALLIUM ARSENIDE QUANTUM DOT 

A spherical quantum dot is taken into consideration to be a 

round shaped semiconductor nanocrystal wherein excitons are 

contained within an endless spherical well. This is equivalent 

to an impenetrable tough round partitions, hence the infinite 

barrier approximation. The confining potential is given in 

Equation 1 as ( Delerue and Lannoo, 2004; Harry et al., 2023): 

 =          (1) 

where, r and a are the radii of the confining potential and 

nanocrystal respectively.  

The basic equation governing the physics of excitons 

(particles or carriers) in nanometric semiconductor confined in 

a potential is the Schrödinger’s time-independent wave 

equation given as (Aruldhas, 2014): 
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 (x, y, z) + V  (x, y, z)  =          (2)  

In this case, μ represents the particle's mass, E its strength, 

and Ψ the particle's associated wave characteristic. and ħ is the 

reduced Planck’s constant. 

Given that the capacity of a spherical quantum dot relies 

on its radius from a fixed point, the round polar coordinate's 

Laplacian ∇^2 is independent of the angular component and 

may be found as                       (3)  

Putting equations 1  and 2 into equation 3 and multiplying 

through with   gives: 

           (4)

 Assume Ψ (𝑥,,) = R(r)G(𝜃)Q(∅) ;  by the method of 

separation of variables, solution of equation 4 is stated as: 

          (5) 

where, k is given as: 

K =                            (6) 

Rewriting Equation 5 as:  

 +  R(r) = 0          (7) 

Solution to (6) is the superposition of the spherical Bessel 

function of order (kr) and the spherical Neumann 

function of order  (kr) stated as (Boas 2003): 

(r) = (kr) +            (8) 

where C and D are constants. 

 The finite requirement of the wave function suggests that D 

need to be equal to zero. 

Thus: 

(r) = (kr)           (9) 

where   is the normalization constant and (r), the eigen 

function. 

The physical description of the system demands that no 

boundary should exist at r = 0. Hence  

(d) = (kd)       (10) 

in which d is the diameter of the field (distance between  

directly opposite points on the sector). 

Also, the endless  barrier requires that R(d) = 0. This interprets 

into : 

 (kd) = 0         (11)  

where (kd) is a zero of the lth order spherical Bessel function. 

Graphically, the Bessel function depicts an oscillatory 

characteristic with a varying amplitude and length. Each one 

has an endless wide variety of zeros. Unfortunately, those 

zeros aren't placed at excellent(sensible) factors (like n or nπ ). 

The boundary circumstance requirement is said as: 

K =           (12)  

in which    is the nth zero of the lth order spherical Bessel 

function. 

Putting (12)  into (6) yields: 

 =       (13) 

The allowed energies  are then given as : 

  =            (14) 

The electron confinement power is gotten by setting 

 in (14) as :  

 =            (15) 

in which is the effective mass of electron. 

Similarly, the hole confinement energy is obtained by 

setting  in (15) 

                         (16) 

Here   is the effective mass of hole. 

Adding (15) and (16) offers the confinement energy 

(genuinely confinement power) for the spherical shaped 

gallium arsenide quantum dot as: 

          (17) 

wherein n represents the radial quantum range and l the orbital 

angular momentum. The floor country corresponds to  

and  ; = 3.142 (Oliver et al, 2010).  

(17) is restated as 

                     (18) 

III. CYLINDRICAL GALLIUM ARSENIDE QUANTUM DOT 

An ideal cylindrical-shaped quantum dot is a cylindrical-

shaped semiconductor nanocrystal in which electrons and 

holes relative to excitons are confined in an infinite cylindrical 

potential well; the confining potential is given as (Harry et al., 

2023): This infinite potential corresponds to impenetrable hard 

cylindrical walls, sometimes known as the Dirichlet problem 

for a cylinder. 

 =          (19) 

where r and L are the radius and length of the cylinder 

respectively. 

The basic equation governing the physics of carriers in a 

nanometric sized semiconductor is the Schrodinger time-

independent wave  equation stated in Equation 2. 

Putting (19) into (2) in cylindrical coordinate and 

multiplying by  gives 

 = -  E                (20)                           (20) 

Using the method of separation of variables and assuming the 

product ansatz: 

(r,,Z) = R(r) Q(                                                (21)                        (21) 

Putting ( 21) into (2), dividing by RQZ and rearranging gives 
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Using the following substitutions: 

 =  ;    = ;   ;   

                                                                  (23)                           (23) 

Recall the Z- Equation of (23) 

 =  

Solution to the above considering boundary conditions is 

given as: 

                                                        (24)                                (24) 

where,  is the wave vector in the z direction. 

The wavefunction must varnish at boundaries, hence  

. For  ground state where  =1, this corresponds: 

L =                                                                                (25)                         (25) 

Putting (23) into (22) and rearranging yields: 

                          (26)                         (26) 

Multiplying (26) by  and rearranging yields: 

+                             (27)                                 (27) 

(27) is a Bessel equation and has solution given as: 

 =                                    (28)                         (28) 

The fact that wave function must varnish at opposite ends and 

not at the origin. Hence, putting  

reduces (28) to : 

 =                                                            (29)                       (29) 

This translate into: 

                                                                    (30)  

where  is the root of the Bessel function of order  (for 

ground state,   

First zero of Bessel function of order one equals 3.8317 

((Oliver et al, 2010). 

Putting this into (30) and solving for k yields: 

                                                                        (31)                          (31)  

Using (23)     

                                            

                                                             (32)                         (32) 

The electron confinement energy, is obtained by putting 

 into (32) and is  stated as: 

                                                        (33)                         (33) 

where is effective mass of electron 

Similarly, hole confinement energy  , is obtained by 

putting into (32) 

                                                        (34)                        (34) 

where is effective mass of hole. 

Total confinement for the cylindrical shaped gallium arsenide  

quantum dot   is the sigma of the confinement energies 

due to the electrons and  due to the holes.  This gives   

                                       (35)                                (35) 

Putting (25) and (31) into (35) yields the ground state 

confinement energy for a cylindrical shaped quantum dot as: 

              (36)                          (36) 

IV. EMISSION WAVELENGTH AND CONFINEMENT ENERGY 

From wave mechanics: 

,                                                                             (37)                        (37) 

Where  is de Broglie wavelength, and p, momentum of 

particle. 

Energy and momentum are related as ( Aruldhas, 2014): 

                                                                             (38)                              (38) 

Where E is energy of particle and c, speed of light 

Using (37) and (38), the emission wavelength  is obtained 

as: 

,            (39) 

    V:  Equivalence Between Sphere and Cylinder 

 Volume of  sphere                                       (40)                          (40) 

where r is the radius and , a constant. 

Volume of cylinder                                     (41) 

where   is the radius, L is the length and  a constant. 

For equivalence , .  

In terms of diameter, the equivalence is stated as: 

                                                                           (42)  

Where L is length of cylinder and d, diameter of cylinder. 

V. COMPUTATION OF CONFINEMENT ENERGIES OF 

SPHERICAL AND CYLINDRICAL SHAPED GALLIUM ARSENIDE 

QUANTUM DOTS  

(18) was used to compute for the confinement energy 

 of the spherical shape, Equations 36 and 39 were used 

to compute for the confinement energy  of equivalent 

cylindrical shaped Gallium Arsenide quantum dot respectively 

within the confinement regime while (30) was used to 

compute for the emission wavelength for both shapes. In 

arriving at the results, the following parameters of Gallium 

Arsenide were used: bulk bandgap (at 300K  

exciton bohr radius,  Planck’s constant h 

  electron rest mass, 

, effective mass of electron 

  effective mass of hole,  

, (Davies, 2005). 

The sampled sizes (diameter) are 2.46, 4.46, 6.46, 8.46, 10.60, 

12.46, 14.46, 20.00, 25.00, and 30.00 nm. 
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Table 1 showing the computed confinement energies for 

both spherical and cylindrical Gallium arsenide quantum dots 

with their corresponding dot sizes (diameters). 

 
TABLE 1: Gallium Arsenide quantum dot with minimum size, ,  

 ;   . 

S/N Dot diameter(nm) Confinement  energy (eV) 

  Spherical Cylindrical 

1 2.46 1.0542 1.8266 

2 4.46 0.3207 0.5561 

3 6.46 0.1529 0.2648 

4 8.46 0.0892 0.1546 

5 10.60 0.0568 0.0985 

6 12.46 0.0411 0.0713 

7 14.46 0.0306 0.0501 

8 20.00 0.0159 0.0277 

9 25.00 0.0102 0.0177 

10 30.00 0.0710 0.0123 

 

TABLE 2: Computed wavelength and size for Gallium Arsenide quantum dot 

S/N Dot diameter(nm) Wavelength  (nm) 

  Spherical Cylindrical 

1 2.46 502.4 382.9 

2 4.46 714.2 629.1 

3 6.46 790.3 637.8 

4 8.46 823.7 789.5 

5 10.60 841.8 818.7 

6 12.46 850.8 833.6 

7 14.46 857.0 845.6 

8 20.00 865.7 858.7 

9 25.00 869.2 864.7 

10 30.00 871.1 868.0 

 

 
Fig. 1: Ground state confinement energy as a function of diameter for Gallium 

Arsenide spherical shaped quantum dot 

 
Fig. 2: Ground state confinement energy as a function of diameter for Gallium 

Arsenide cylindrical shaped quantum dot 

 
Fig. 3: Combined plot for ground state confinement energy as a function of 

diameter for spherical and cylindrical shaped Gallium Arsenide quantum dot 

 
Fig.4: Sizing curve for spherical Gallium Arsenide quantum dot 
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Fig. 5: Sizing curve for cylindrical Gallium Arsenide quantum dot 

VI. DISCUSSION OF RESULTS 

The graphs of ground state confinement energy against 

size (diameter) for each spherical and cylindrical Gallium 

Arsenide (GaAs) quantum dots in Figures 1 and 2 depict the 

dependence of confinement power on the dimensions of 

quantum dots. The result shows that ground state confinement 

energy is inversely proportional to the diameter of quantum 

dot for each shapes Figures 1 and 2 depict two graphs that are 

asymptotically related to the horizontal axis, or diameter. 

Therefore, the confinement power drops but never reaches 

zero as the diameter increases. That is to say, a spherical or 

cylindrical Gallium Arsenide quantum dot lowest energy isn't 

always zero. 

The confinement energy in a quantum dot is found by 

increasing the strength of the band gap. Confinement begins 

when the size (or diameter) of the quantum dot pattern is 

similar to or of the order of the exciton bohr radius a_B (10 

nm for Gallium Arsenide). To put it another way, when the 

dimensions are similar to 2a_B (doubles the exciton bohr 

radius). Alternatively, one may want to say that confinement 

begins when the scale or diameter of the quantum dot sample 

is comparable to the de Broglie wavelength of the provider 

(electrons and holes). The power of confinement increases as 

the quantum dot's dimensions are gradually reduced until the 

minimal size (the magic and cluster length restrict) is reached, 

which is set 2.37 nm. nm nm for Gallium Arsenide. 

At this limit, the crystal losses its stability (Brus, 1984). 

Figure 3 shows that in general, confinement is stronger in 

cylindrical Gallium Arsenide than in spherical Gallium 

Arsenide quantum dot. 

Figures 4 shows the sizing curve (graph of size against 

wavelength) for spherical shaped Gallium arsenide quantum 

dot. Also, Figure 5 shows the sizing curve for equivalent sizes 

of cylindrical Gallium Arsenide quantum dot. The graphs 

show the same pattern within the confinement regime for the 

different shapes. The both shapes exhibit an exponential 

dependence on size of quantum dot. Thus, irrespective of 

shape, one can conclude that the larger the dot, the redder 

(lower energy) its fluorescence spectrum would be. 

Conversely, smaller quantum dots emit bluer (higher energy) 

light. The coloration is explicitly related to the energy levels 

of the quantum dot. The vast application of quantum dots is 

emission based and depends on the sizing curves. The visible 

portion of the electromagnetic spectrum which spans from 

about 400 nm to 700 nm is that region of wavelength that is 

detectable by the human eye. Table 2 shows that emission 

wavelength of Gallium Arsenide spans through the visible 

spectrum irrespective of the shape. This partly explains why 

Gallium Arsenide quantum dots are used in applications such 

as light emitting diodes, laser diodes, etc. 
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