

Research on Factors Affecting High School Students' Decision to Choose Hanoi University of Industry

Dr. Nguyen Thi Thuy¹, Vu Thi Nhu Quynh²

¹Hanoi University of Industry ²Faculty of Business Administration - Hanoi University of Industry Email address: thuynt4@haui.edu.vn

Abstract— In fact, the admissions process of some universities gradually becomes difficult when there are schools that cannot recruit enough quotas due to the increase in enrollment quotas from large public universities. This leads to a situation where some schools lack quotas and are forced to lower entry scores to get enough students, thereby making it difficult to ensure the desired entry. In addition, many situations of students also choose majors according to emotions, lack of understanding of the profession, leading to discouragement, lack of motivation to study during the learning process, causing the output of schools to be affected. To meet the set goals, many universities have focused more on communication campaigns to provide necessary information to high school students and improve the status of schools. But not all communication efforts can be effective when schools don't fully understand what students and parents want when choosing their college aspirations. In order to solve the outstanding problem as well as realize the importance of choosing a school for high school students, with universities in general and Hanoi University of Industry in particular, the group decided to study the topic "Research on factors affecting the decision of high school students to choose Hanoi Industrial University" with the goal of Through research, Hanoi University of Industry will be able to come up with appropriate policies to attract students, train qualified and qualified people to first be able to compete in the labor market and then develop science and technology to contribute to the national economv.

Keyword— Choice, selection decision.

I. INTRODUCTION

Choice is about weighing two or more things about their characteristics and characteristics in order to make a decision on the most appropriate one based on available information, values, goals, feelings and situations. The selection process can be applied in many different fields (Glasser, 1998).

A choice can be subjectivity or objectivity, intentionally or arbitrarily.

To be able to make effective choices, each person needs to have sufficient information and knowledge about the options available, and analyze and evaluate important factors such as values, goals, and situations to be able to make the right decision. In addition, making choices also requires the alertness and decisiveness of each person, because making the wrong choice can lead to serious consequences and affect the lives of oneself and those around them.

II. OVERVIEW

Research hypothesis

Hypothesis 1: The factor *"influential individuals"* positively affects the intention of high school students to choose Hanoi University of Industry

Hypothesis H2: The "school's communication efforts" factor positively affects the intention of high school students to choose Hanoi University of Industry

Hypothesis H3: The factor *"fixed characteristics of the school"* positively affects the intention of high school students to choose Hanoi University of Industry

Hypothesis H4: The factor *"learners' personal characteristics"* positively affects the intention of high school students to choose Hanoi University of Industry

Study design

To carry out this study, the authors studied through 2 main stages:

Qualitative research aims to develop questionnaires to survey opinions of high school students in Vietnam.

Quantitative research to collect information, analyze data for research purposes.

III. RESULT AND DISCUSSION

- A. Reliability of Cronbach's Alpha scale
 - Cronbach's Alpha coefficient is denoted as: α
 - The coefficient α is as large as possible. However, if > 0.95 1, it is not good. Because this proves that many indicators measuring that variable have the same phenomenon.
 - $0.60 \le \alpha < 0.70$: Acceptable (In case of new research or new research context)
 - $0.70 \le \alpha < 0.80$: Acceptable
 - $0.80 \le \alpha < 0.90$: Good
 - $0.90 \le \alpha \le 1.00$: Acceptable *Not good*
 - Reliability testing for scale Q5.1 -External factors

FABLE 3.1. Reliabilit	y statistics of Q	25.1 – External factors
-----------------------	-------------------	-------------------------

Reliability Statistics		
Cronbach's Alpha	N of Items	
.807	5	

TABLE 3.2.	Statistics of	total items	of Q5.1 -	 External factors

	Item-Total Statistics				
	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's Alpha	
	Item Deleted	if Item Deleted	Total Correlation	if Item Deleted	
Q5.1.1	14.28	10.378	.525	.793	
Q5.1.2	14.57	9.897	.650	.752	
Q5.1.3	14.65	10.966	.547	.784	
Q5.1.4	14.67	10.083	.692	.741	

Q5.1.5 14.81	10.612	.563	.779

 Reliability accreditation for scale Q5.2 - School communication efforts

TABLE 3.3. Q5.2 Reliability Statistics - School Communication Efforts

Reliability Statistics		
Cronbach's Alpha	N of Items	
.869	5	

TABLE 3.4. Q5.2 Item Total Statistics - School Communication Efforts

Item-Total Statistics				
	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's Alpha
	Item Deleted	if Item Deleted	Total Correlation	if Item Deleted
Q5.2.1	14.64	10.337	.678	.847
Q5.2.2	14.86	10.507	.737	.831
Q5.2.3	14.74	11.037	.716	.838
Q5.2.4	14.70	10.617	.703	.840
Q5.2.5	14.90	11.087	.643	.854

 Reliability verification for scale Q5.3 - Fixed characteristics of the field

TABLE 3.5. Reliability statistics of Q5.3 - Fixed characteristics of the field

Reliability Statistics		
Cronbach's Alpha	N of Items	
.934	9	

TABLE 3.6. Statistics of the total number of items of Q5.3 - Fixed characteristics of the field

Item-Total Statistics				
	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's Alpha
	Item Deleted	if Item Deleted	Total Correlation	if Item Deleted
Q5.3.1	29.79	43.886	.712	.929
Q5.3.2	29.76	44.572	.756	.927
Q5.3.3	29.81	42.788	.778	.925
Q5.3.4	29.59	42.542	.791	.925
Q5.3.5	29.45	43.846	.783	.925
Q5.3.6	29.78	42.961	.760	.927
Q5.3.7	29.73	42.883	.813	.923
Q5.3.8	29.66	43.507	.829	.923
Q5.3.9	29.97	45.341	.589	.937

 Reliability testing for scale Q5.4 - Individual characteristics of learners

TABLE 3.7. Q5.4 Reliability Statistics - Learner Personal Characteristics

Reliability Statistics		
Cronbach's Alpha	N of Items	
.917	5	

TABLE 3.8. Statistics of total items of Q5.4 - Individual characteristics of learners

Item-Total Statistics				
	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's Alpha
	Item Deleted	if Item Deleted	Total Correlation	if Item Deleted
Q5.4.1	15.92	10.897	.802	.895
Q5.4.2	15.98	10.982	.790	.898
Q5.4.3	15.91	10.361	.842	.887
Q5.4.4	15.89	11.189	.813	.893
Q5.4.5	16.19	12.068	.693	.916

- Reliability accreditation for the Y scale - Intent to choose Hanoi University of Industry

TABLE 3.9. Statistics on the reliability of the Y scale – Intention to choose Hanoi University of Industry

Reliability Statistics		
Cronbach's Alpha	N of Items	
.876	3	

TABLE 3.10. Statistics of Y scale - Intention to choose Hanoi University of

mdustry								
	Item-Total Statistics							
	Scale Mean if	Scale Variance if	Corrected Item-	Cronbach's Alpha if				
	Item Deleted	Item Deleted	Total Correlation	Item Deleted				
Y1	7.42	3.526	.815	.780				
Y2	7.71	3.575	.709	.873				
Y3	7.63	3.444	.766	.822				

B. Examination factor analysis – EFA

Definition: Testing the convergence and differentiating values of the observed variable:

Convergence value: Observed variables with the same property will converge on the same factor. When represented in a rotation matrix, these variables will be in the same column together.

Differentiating value: The observed variables converge on one factor and must be distinguishable from the observed variables that converge on another. When represented as a rotation matrix, each group of variables will be separated into separate columns.

With Cronbach's Alpha scale reliability testing, we are evaluating the relationship between variables in the same group and the same factor, not the relationship between all the variables observed in the factors. different. Meanwhile, EFA looks at the relationships between variables in all the different groups (factors) to detect observed variables that upload multiple factors or observed variables that are misfactored from the beginning. (Loc)

Criteria in EFA analysis

The KMO (Kaiser-Meyer-Olkin) is an indicator used to consider the appropriateness of factor analysis. The value of the KMO must reach a value of 0.5 or higher ($0.5 \le \text{KMO} \le 1$) which is a sufficient condition for factor analysis to be appropriate. If this value is less than 0.5, then factor analysis is likely not appropriate for the study dataset.

Bartlett's test of sphericity is used to see if the variables observed in a factor correlate with each other. It should be noted that the necessary condition for applying factor analysis is that observed variables reflecting different aspects of the same factor must be correlated. This point relates to the convergence value in the EFA analysis mentioned above. Therefore, if the test shows no statistical significance, factor analysis should not be applied to the variables under consideration. The Bartlett test is statistically significant (sig Bartlett's Test < 0.05), demonstrating that observed variables are correlated with each other in the factor.

Dependent variables

TABLE 3.11. KMO and Bartlett's Test table				
KMO and Bartlett's Test				
Kaiser-Meyer-Olkin Measure of Sampling Adequacy721				
	Approx. Chi-Square	184.301		
Bartlett's Test of Sphericity	df	3		
	Sig.	<.001		

KMO = 0.721 demonstrates data suitable for EFA analysis

Dr. Nguyen Thi Thuy and Vu Thi Nhu Quynh, "Research on Factors Affecting High School Students' Decision to Choose Hanoi University of Industry," *International Journal of Multidisciplinary Research and Publications (IJMRAP)*, Volume 6, Issue 11, pp. 166-170, 2024.

Sig. < 0.001 demonstrates that observed variables are correlated in factors

TABLE 3.12.	Total	variance	table	Excer	pt
					-

Total Variance Explained							
Componen t		Initial Eigen	values	Extra	action Sums Loading	of Squared	
	Total	% of Varianc e	Cumulativ e %	Total	% of Varianc e	Cumulativ e %	
1	2.41 2	80.400	80.400	2.41 2	80.400	80.400	
2	.373	12.437	92.837				
3	.215	7.163	100.000				

The results of the analysis showed that one factor extracted at the eigenvalue was equal to 2.412 > 1. This factor explains 80,400% of the data variation of the 3 observed variables participating in EFA

TABLE 3.13. Rotating number matrix table

al variance table extracted

1	Matrix
	Component
	1
Y1	.924
Y3	.900
Y2	.865
Extrac	tion Method:
Princi	pal
Comp	onent

Component

Independent variables

		173.60	1.0.1	
TA	BLE 3.14.	KMO	and Bartl	ett's Test table

Analysis.

TIBLE of a finite and Builden's rest dete				
KMO and Bartlett's Test				
Kaiser-Meyer-Olkin Measure of Sampling Adequacy934				
Bartlett's Test of Sphericity	Approx. Chi-Square	2323.452		
	df	276		
	Sig.	<.001		

KMO = 0.934 demonstrates data suitable for EFA analysis Sig. < 0.001 demonstrates that observed variables are correlated in factors

Total Variance Explaine	d	
-------------------------	---	--

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	13.538	56.410	56.410	13.538	56.410	56.410	6.843	28.512	28.512
2	1.599	6.663	63.073	1.599	6.663	63.073	3.840	16.001	44.512
3	1.050	4.374	67.447	1.050	4.374	67.447	3.317	13.819	58.332
4	1.005	4.188	71.634	1.005	4.188	71.634	3.193	13.303	71.634
5	.796	3.316	74.950						
6	.722	3.007	77.957						
7	.604	2.515	80.473						
8	.530	2.209	82.681						
9	.507	2.111	84.792						
10	.477	1.988	86.780						
11	.448	1.866	88.646						
12	.389	1.622	90.268						
13	.289	1.203	91.471						
14	.284	1.185	92.656						

The eigenvalues of the 4 independent variables are all >1, so all 4 variables are retained in the model.

The total direction after extraction of the 3 variables is equal to 71.634% > 50%. Thus, valid models and variables explain 71.634% of the variability of the model.

TAB	LE 3.16.	Rotat	ing nu	mber 1	natrix	tał
	Rotate	d Con	npone	nt Ma	trix ^a	
			Comp	onent		
		1	2	3	4	
	Q5.4.3	.803				
	Q5.4.4	.772				
	Q5.4.2	.652				
	Q5.4.1	.619				
	Q5.4.5	.595				
	Q5.3.9		.766			
	Q5.3.6		.668			
	Q5.3.1		.595			
	Q5.3.8		.556			
	Q5.2.1			.741		
	Q5.2.2			.740		
	Q5.1.3				.812	
	Q5.1.4				.620	
	05.1.5				.560	

The load factors of observed variables > 0.5 satisfying the condition should be retained

The observed variables of each independent variable are uploaded to converge into the same group

The 4 independent variables of the uploaded model differentiate into 3 different groups. Demonstrates that there is no correlation between independent reading variables. So the model fits perfectly.

\sim	341		•	· ·
1	A/1111	tiwariata	roaroccion	analycic
· · ·	IVIAL	uvunune	regression	unuivoio

TABLE 3.17. Model Summary table						
Model Summary ^b						
Model	R	R	Adjusted R	Std. Error of the	Durbin-	
		Square	e Square Estimate		Watson	
1	.854ª	.729	.719	.48238	1.798	
a. Predictors: (Constant), MEAN Q5.4, MEAN Q5.2, MEAN Q5.1,						
MEAN_Q5.3						
b. Dependent Variable: MEAN Y						

Adjusted R Square = 71.9% i.e. independent variables explain 71.9% of the dependent variable. Demonstrating the independent variable in the model explains as much as the independent variable does.

	TABLE 5.18. ANOVA table							
	ANOVA ^a							
	Model	Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	68.755	4	17.189	73.869	<.001 ^b		
	Residual	25.596	110	.233				
	Total	94.352	114					
a. Dependent Variable: MEAN Y								
b. Predictors: (Constant), MEAN_Q5.4, MEAN_Q5.2, MEAN_Q5.1,								
MEAN Q5.3								

TABLE 3.18. ANOVA table

The ANOVA table gives test results F to assess the conformity hypothesis of the regression model. The Sig. test value F < 0.001 < 0.05 then the regression model is suitable.

TABLE 3.19.	Coefficients	table
-------------	--------------	-------

	Coefficients ^a								
		Unstandardized		Standardized		Sig.	Collinearity		
	Model	Coefficients		Coefficients	t		Statistics		
wodei		В	Std. Error	Beta			Tolerance	VIF	
	(Constant)	051	.236		215	.830			
	MEAN_Q5.1	.254	.102	.220	2.500	.014	.318	3.142	
1	MEAN Q5.2	068	.099	060	683	.496	.318	3.141	
	MEAN_Q5.3	.406	.119	.366	3.417	<.001	.214	4.664	
	MEAN_Q5.4	.416	.113	.377	3.665	<.001	.234	4.280	
a.	a. Dependent Variable: MEAN_Y								

Variable MEAN_Q5.2 has a test sig value of t equal to 0.496 > 0.05, so this variable has no meaning in the regression model,

in other words this variable has no effect on the dependent variable MEAN_Y. The remaining variables including MEAN_Q5.1, MEAN_Q5.3, MEAN_Q5.4 all have a test sig t less than 0.05, Therefore, these variables are statistically significant, all acting on the dependent variable MEAN_Y. The regression coefficient of these independent variables all bears a positive sign, so the independent variables have a positive effect on the dependent variable.

Hypothetical conclusion:

H1: External factors (MEAN_Q5.1) affect the intention of high school students to choose Hanoi University of Industry (Accepted)

H2: The school's communication efforts (MEAN_Q5.2) affect the intention of high school students to choose Hanoi University of Industry (Rejected)

H3: Fixed characteristics of the school (MEAN_Q5.3) affect the intention of high school students to choose Hanoi University of Industry (Accepted)

H4: Learner's personal characteristics (MEAN_Q5.4) affect the intention of high school students to choose Hanoi University of Industry (Accepted)

From the regression coefficient, we construct a normalized regression equation in the following order:

 $Y = 0.416 * Q5.4 + 0.406 * Q5.3 + 0.254 * Q5.1 + \epsilon$ Official Model:

Nguồn: Nhóm nghiên cứu

For a Normal P-P plot, if the data points in the residual's distribution stick to the diagonal lines, the residual has a normal distribution.

IV. CONCLUSION

The study aims to explore and examine the influence of factors on the decision of high school students to choose Hanoi University of Industry. Based on past studies, analyzing the current enrollment situation in Vietnam, the team has proposed research hypotheses: External factors affecting the intention of high school students to choose Hanoi University of Industry (H1); The school's communication efforts influence the intention of high school (H2) students to choose Hanoi

University of Industry. The fixed characteristics of the school affect the intention of students to choose Hanoi University of Industry (H3). Learners' personal characteristics influence the intention of high school students to choose Hanoi University of Industry (H4).

By preliminary evaluation of scales constructed through the Cronbach Alpha coefficient, total variable correlation and factor discovery analysis show that the established research concepts are all intrinsically consistent and are unidirectional scales. Factor-affirmative analysis with measurement models and critical models shows that research concepts using measured factors are compatible with actual data, concepts that achieve convergent value and differentiating value. This

Dr. Nguyen Thi Thuy and Vu Thi Nhu Quynh, "Research on Factors Affecting High School Students' Decision to Choose Hanoi University of Industry," *International Journal of Multidisciplinary Research and Publications (IJMRAP)*, Volume 6, Issue 11, pp. 166-170, 2024.

suggests that the research concepts used have been shaped for high school graduates when surveys or, in other words, the set of scales used for research are appropriate and reliable.

REFERENCES

- [1]. Chapman, D. W. (1981). A model of student college choice. 490-505.
- [2]. D.W.Chapman. (1981). A model of student college choice. *The Journal of Higher Education*, 490-505.
- [3]. *HANOI UNIVERSITY OF INDUSTRY* (n.d.). Retrieved from www.haui.edu.vn.
- [4]. Fishbein, M. v. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addison – Wesley.
- [5]. Glasser, D. W. (1998). Choice Theory. Retrieved from DOL Dictionary.
- [6]. Kotler, P. (1999). *Basic marketing*. Statistics Publishing House.
- [7]. Lien, P. (2024). Proposing to increase university tuition fees, keeping general tuition fees the same. *Government Online Newspaper*.
- [8]. Loc, P. (n.d.). EFA Discovery Factor Analysis.
- [9]. Higher Education Law. (2018).
- [10]. Ly, T. P. (n.d.). 2013. Life is a choice.
- [11]. Page, T. (2022). Many students choose careers by inspiration. Labour.