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Abstract—An analytical procedure for the flexural motion of non-

uniform structure on variable subgrade with moving weight is 

studied. The motion equation is solved by an assumed mode 

technique to obtain second order differential equation which is then 

solved by Laplace method and convolution theory. The effects of the 

variable elastic foundation, as well as damping intensity and 

torsional rigidity of the prismatic beam having moving distributed 

weight are assessed and the results displayed in plotted curves. 

 

Keywords— Damping, Moving load, Non-uniform beam, Torsional 

rigidity, Variable foundation. 

I. INTRODUCTION  

Owing to its significant relevance in structural and 

construction engineering, extensive works have been 

conducted to predict the behavioral pattern of beam-like on 

foundation subgrade traversed by the presence of load moving 

at uniform speed [1-4].  

The appearances of damping in vibration of elastic 

structures have great effects and also useful for design 

engineering. Many authors have worked in this subject area 

for both beam and plate structural element. Crandall [5] 

studied the behavior of damping in role and special area where 

small amount of damping has an exaggerated importance in 

determining the dynamic behavior of a system are examined. 

Mousa and Reza [6] gave novel approach for free vibrational 

synthesis of the cracked cantilever beam having a breaking 

crack by taking into account the effect of the distributed 

structural damping. Robin and Rana [7] analyzed the 

vibrations of isotropic/orthotropic damped plate whose 

thickness vary and lying on foundation. 

Practical problems in the structural dynamics especially 

under moving loads considers beam parameter to be vary. 

Here, the distribution of the non-uniform characteristics may 

be assumed as power function [8]. Also, when the structure 

has variable cross-section that is the beam parameters, mas 

and moment of inertia are considered as varying along the 

length of the structure [9, 10]. Gutierrez and Laura [11] 

presented dynamical analysis of a non-uniform cross-sectional 

structure traversed by concentrated load. In a later 

development, the vibrational behavior of a beam with cross-

section beam having concentrated mass and force by FEM was 

considered by Ahmadian et al [12]. Taha [13] obtained a 

closed form solution for damped free vibration of a non- 

uniform shear beam resting on an elastic foundation. 

Recent studies on distributed moving weight lying on 

elastic subgrade were addressed by authors [14-17].   Zhong et 

al [18] presented dynamic instability of a simply supported 

rectangular plate attached with the arbitrary concentrated 

masses owing to parametric resonance excited by an in-plane 

uniformly distributed periodic load along two opposite edges. 

Ogunyebi et al [19] examined vibration of non-prismatic 

beam-like lying on variable foundation subgrade by mobile 

concentrated forces. In the paper, the dynamic effect of 

rotatory inertia is neglected. Very recently, Ogunyebi [20] 

developed an analytical procedure for the solution of plate 

type structural members due to the influence of torsional 

rigidity and other vital parameters. The fourth order governing 

differential equation is addressed by the versatile method of 

Shadnam et al. In the work, a rise in the values of these 

structural parameters produces a noticeable effect on the 

critical velocity of the plate – type member. 

In this present study, the effects of damping and torsional 

rigidity on variable non-uniform elastic foundation under 

moving distributed load is extensively studied to determine the 

dynamic role of the vital input characteristics in the motion 

equation. 

II. THEORY AND FORMULATION 

 
Fig. 1: Schematic diagram of moving distributed loads on non-uniform beam 

  

Let us consider non-uniform thin beam moving with 

constant velocity lying on variable foundation subgrade and 

subjected to MDM system. Thus, vibration equation is 
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with as Young modulus,  as moment of inertia,  as 

mass beam-like,  as damping coefficient, B as torsional 

rigidity  as foundation,  as moving load,  

as transverse displacement, t as time, x = as spatial 

coordinate and  as stiffness. 

The non-prestressed beam is simply supported thus, as in most 

practical case, the boundary conditions are assumed to be 

arbitrary i.e it can take different forms of classical BC’s. Also, 

IC’s of the problem has the form 
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As an example in this study, a variable elastic foundation of 

prestressed beam is considered [17]. To this end, the variable 

elastic foundation is given as 
2 3

0( ) (4 3 )K K   = − +   (3) 

where 0K is variable foundation constant. 

The load on the structural element is distributed and moving 

with uniform speed and chosen to be  

( , ) ( )Q t PH ct = −     (4) 
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Using equation (3), equation (4) and equation (5), equation 

(1), one becomes 
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III. METHOD OF SOLUTION 

The motion equation governing the non-prismatic beam-

like lying on variable foundation subgrade traversed by MDL 

(moving distributed load) is solved by the versatile Galerkin’s 

method of obtaining approximate analytical solutions. The 

objective is to lower the order of the motion equation to 2nd 

order ODE. The solution method assumes the expansion of the 

unknown function  in a series of the orthonormal 

eigenfunction  the choice of which must satisfy the 

boundary condition [18]. To this end, the method is given as 

1

( , ) ( ) ( )n n

n

W t V t y 


=

=    (7) 

where  are the mode shape functions and  the 

amplitude of the motion. 

It can be shown that for simply supported non-prismatic beam, 

the modal shape of deflecting structure can be given as 
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Considering equations (7) and (8), equation (6) now becomes 
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The need to impose orthogonality condition in order to 

determine  is pertinent. Thus, the orthogonality of the 

function in equation (9) gives 
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Equation (10) can be re-arranged to yield 
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Equation (11) is the 2nd order ODE with its constant 

coefficients. To proffer solution for equation (11), with aid of 

Laplace transformation, one obtains algebraic equation given 

as 
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Further simplification of equation (18) yields 
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So that (20) gives, 
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The inversion of equation (22), and using convolution 

theorem, one obtains 

1* 2*

0 0

1 1
( ) a b

t t
q t q t

n

a b

V t e G e G
q q

 
= − 
 
    (23) 

where 

1*

0
cosa

t
q u

G e udu−
=  ,

2*

0
cosb

t
q u

G e udu−
=  (24) 

Evaluating the integrals, equation (24) becomes  
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Substituting equation (25) into equation (7), yields 
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equation (26) gives the vibration response to non-uniform 

beam-like lying on elastic subgrade of MDM at uniform 

speed. 

IV. NUMERICAL RESULTS AND DISCUSSION  

Numerical results for the non-prismatic beam problem is 

presented in this section. A non-uniform beam of length 

m and velocity m/s is considered. Other values 

used are modulus of elasticity N/m2, moment of 

inertia  and mass beam is .  

Figure 1 depicts non-uniform beam-like lying on variable 

Winkler elastic subgrade traversed by moving distributed 

weight moving at uniform speed. From the figure, it is seen 

that for constant values of other important parameters, an 

increase in elastic subgrade
0K  decrease the profile of beam-

like traversed by moving distributed weight at uniform speed. 

Figure 2 depicts profile of non-uniform beam-like lying on 

variable Winkler subgrade traversed by moving distributed 

weight at uniform speed. Clearly, it is shown that higher 

values of the torsional rigidity
0B lower the profile of the 

vibrating beam-like. Figure 3 depicts profile of non-uniform 

beam-like lying on variable Winkler subgrade traversed by 

moving distributed weight at uniform speed and observation 

from the figure shows that higher values of the damping 

parameter
0D lower the profile of the vibrating beam-like 

element under MDL. 

 

 
Fig. 1: Deflection of non-uniform structure at different values of and 

constant value of torsional rigidity and damping  

 

 
Fig. 2: Deflection of non-uniform structure at different values of  and 

constant value of subgrade modulus and damping  
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Fig. 3: Deflection of non-uniform structure at different values of  and 

constant value of subgrade modulus and torsional rigidity  

V. CONCLUSION  

Figure 2 depicts profile of non-uniform beam-like lying on 

variable Winkler subgrade traversed by moving distributed 

weight at uniform speed. Clearly, it is shown that higher 

values of the torsional rigidity
0B lower the profile of the 

vibrating beam-like. Figure 3 depicts profile of non-uniform 

beam-like lying on variable Winkler subgrade traversed by 

moving distributed weight at uniform speed and observation 

from the figure shows that higher values of the damping 

parameter
0D lower the profile of the vibrating beam-like 

element under MDL.  
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