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Abstract— Many differential equations can’t be solved analytically, 

and for many applications, such as in electronic engineering – 

numerical solution is often more sufficient.  Schrodinger equation, 

Poisson equation and Continuity equations are the most popular 

differential equations used in semiconductor materials.  In this paper, 

the numerical solution of these equations is reviewed while focusing 

on some specific methods which are compared and evaluated. 

Schrodinger equation is solved using both Numerov method and 

Finite Difference method. Poisson equation is solved using Finite 

Difference method at various types of boundary conditions. 

Continuity equation is solved using Scharfetter-Gummel method. 

Numerical solutions are compared with the exact results and the 

dependence of error on the mesh size is shown. 

 

Keywords—Numerov method; Finite Difference Method; Scharfetter-

Gummel Method. 

I. INTRODUCTION EQUATION CHAPTE R (NEXT) SECTION 1 

Semiconductor is a class of solids which have intermediate 

electrical conductivity between insulators and conductors. 

Semiconductors are used in the manufacture of different kinds 

of electronic devices, including transistors, diodes, and 

integrated circuits. Such devices have been used in a lot of 

application because of their reliability, compactness, power 

efficiency, and low cost. 

Hereinafter, we will discuss the most popular differential 

equations used in modelling semiconductor materials. We will 

focus on three main equations: Schrodinger equation Eq. (1.1), 

Poisson equation Eq. (1.2) and Continuity equation for 

electrons Eq. (1.3) and for holes Eq. (1.4). 

First, The Schrödinger equation is a differential equation 

that governs the wave function of a quantum-mechanical 

system. It is the basis of in quantum mechanics, and its 

discovery was a significant landmark in the development of 

the subject. The form of Schrodinger equation is 

( ) ( ) ( ) ( )
2 2

22

d
x V x x E x

m dx
  − + =

ħ
 (1.1)  

 (Where m is the particle mass, ħ  is the reduced Planked 

constant, ( )x  is the wave function, ( )V x  is the potential, 

E  is the particle energy).In these paper, The 1-D time-

independent Schrodinger equation [1, 2] is solved using two 

methods: Numerov method [3, 4] and Finite Difference 

method. Numerov method is used to solve ordinary 

differential equations [5] of second order in which the first-

order term does not exist. To be able to derive Numerov 

Method we start with the expansion of the solution in a Taylor 

series. Numerical outcomes from Numerov method and Finite 

Difference method are compared with exact solution. From 

comparison we know that Numerov method is more accurate 

than Finite Difference method.     

Second, the solution to Poisson's equation is the potential field 

caused by a given electric charge or mass density distribution; 

with the potential field known, one can then calculate 

electrostatic or gravitational (force) field. Also, Poisson 

equation is a powerful tool for modelling electrostatic systems 

behaviour. Poisson equation form is    

( ) ( )u x g x =         (1.2) 

 (Where ( )u x is second derivative of a given function and, 

( )g x  is a given function). In this paper, Poisson equation is 

solved using Finite Difference method [6, 7] with different 

boundary conditions (Dirichlet-Dirichlet boundary condition, 

Neumann-Dirichlet and Dirichlet-Neumann boundary 

condition). Numerical outcomes are compared with exact 

solution in all cases and absolute error between numerical and 

exact outcomes is shown.  

Third, the continuity equation can describe the transfer of 

various quantities, such as gas or fluid. The continuity 

equation can be written in integral form, which is applied at 

finite region, or in differential form, which is applied at a 

point. Continuity equation takes two forms as in Eq. (1.3) 

which is for electrons and Eq. (1.4) which is for holes. 

ext 

( ) 1 p

p

Jp p
G

t q x

  

  
= − + −  (1.3) 

ext 

( ) 1 n

n

Jn n
G

t q x

  

  
= + + −  (1.4) 

Where 

p p p

dp
J q p qD

dx
= −E  (1.5) 

n n n

dn
J q p qD

dx
= +E  (1.6) 

(where nJ  is current density for electrons, pJ  is current 

density for holes, n  is the electrons concentration, p  is the 
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holes concentrations, ext G  is the external generation).In these 

paper, Continuity equation is solved numerically using 

Scharfetter-Gummel method [8-15]. The numerical outcomes 

also are compared with the exact solution. The Scharfetter-

Gummel scheme provides a good way to discretise the 

continuity equation for particle transport.  

II. NUMERICAL METHODS FOR  SOLVING SCHRODINGER 

EQUATIONE QUATION CHA PTER (NEXT) SE CTION 2 

This section presents some of numerical methods which 

used to solve Schrodinger equation. Firstly, paper presents 

Numerov method and its principle. Secondly, Numerov 

method will be applied to solve Schrodinger equation. Thirdly, 

Schrodinger equation is also solved using finite difference 

method. Finally, numerical comparisons are showed. 

A. The Numerov Method 

Presenting of mathematical conclusion of Numerov 

method and how to apply it to solve Schrodinger equation: 

For linear ordinary differential equations [3, 5, 16, 17] 

without a 
'y term, like the Schrödinger equation, the Numerov 

method can be used. 

( ) ( ) ,y m x y l x a x b+ =         (2.1) 

Using Taylor expansion we have 

( ))

' 2 3

1

4 (5(4 5) 6

1 1

2 3!

1 1

4! 5!

n n ny y hy h y h y

h y h y O h

+ = + + 

+

 +

+



+



     (2.2) 

( )(

' 2 3

1

4 54) ( 65)

1 1

2 3!

1 1
.

4! 5!

n n ny y hy h y h y

h y h y O h

−
 −

−

= −

+

+

+

     (2.3)    

 Eq.(2.2) and Eq.(2.3)are added and simplifying to produce 
''y  

( )'' 21 1

2

2n n n
n

y y y
h

h
y O+ −− +
= +  (2.4) 

Our previous second-order formula for the difference 

approximation to 
''

ny is used to apply on Eq. (2.1). 

2
(4)

2
( ( ) ( ))

d
y m x y l x

dx
= − +       (2.5) 

Using the same procedure as before Eq. (2.4), we can calculate 

the fourth derivative. 

( )

1 1

2

2

(4)

1 1 1 1

2

2

2

n n n n
n

n n n n n

m y m y
y

m y l l
h

l
O

h

h

+ +

− − + −

− +
= +

− + − +
+

     (2.6) 

The next term in Taylor series for y is  

( )

4 2

1 1

6

1 1

(4)

1 1

1 1
2

12 12

2

(

)

n n n n n

n n n n n

h y h m y m y

m hy l l l O

+ +

− − + −

= − +

− + − + +

     (2.7)  

Using Eq. (2.7) to substituting into equation Eq. (2.1) and 

simplifying we get a new expression for
''y  

( )

2 '' 2

1 1

2 2

1 1

2

1 1

1
1

12

1 1
2 1 1

12 12

1
2

12

n n n

n n n n
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h y h y

h y h y

h l l

m

m m

l

+ +

− −

+ −

 
= + 
 

   
− + + +   

   

− − +

 (2.8) 

  

After simplifying Eq. (2.8) we get this form 

 

(

2 2

1 1

2

1 1

2

1 1

1 5
1 2 1

12 12

1
1

12

1
10 )

12

n n n n

n n

n n n

m m

m

l

h y h y

h y

h l l

+ +

− −

+ −

   
+ − −   

   

 
+ + 
 

= + +

  (2.9) 

The nonhomogeneous boundary value problem is now 

solvable as a matrix equation and then gets the Eigen values 

and Eigen vectors which is the results. 

The Numerov method [3, 18, 19] will be applied to solve 

Schrodinger equation due to Numerov method is a   numerical 

method for solving ordinary differential equations of the form 

( )
( ) ( )

2

2

d x
g x x

dx


=  (2.10) 

The 1-D Schrodinger equation without regard to time (Eq. 

(1.1)) Can be expressed as Eq. (2.10)  

( ) ( ) ( )

( ) ( )

2

2

2
( ( ))

m
x E F x x

g x x

 



= − −

=

ħ  (2.11) 

Using Wave function expansions in the Taylor series ( )x  

we will go through the same procedures of the Numerov 

method then we get  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

42 4

2

1

12

x d x d x
x

d

d x O d

  




+ + − −
=

− +

 (2.12) 

  

Using Eq. (2.11) and Eq. (2.12) we obtained 
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( )

1 1

2

1 1 1 1

2

1
2

12

i i i
i i

i i i i i i

g

g

d

g g

  


  

+ −

+ + − −

+ −
=

− + −

 (2.13) 

Where  

( ) ( ) ( )1 1, ,i i ig dg x d g g x g g x− + −   +    (2.14) 

( ) ( ) ( )1 1, ,i i ix d x x d     − − −   −  (2.15) 

  

Rearranging Eq. (2.13) will get 

( )

1 1

2

1 1 1 1

2
 

1
10

12

i i i

i i i i i ig

d

g g

  

  

+ −

+ + − −

+ −
=

+ +

 (2.16) 

   

( ) ( )

( )

1 12 2

1 12

2 2
, ,

2

i i i i

i i

m m
f E F f E F

m
f E F

− −

+ +

= − − = − −

= − −

ħ ħ

ħ

 (2.17) 

2

1 1

2

1 1 1 1

1 1

2

2

10

12

10

12

i i i

i i i i i i

i i i

m d

F

E

F F

  

  

  

− +

− − + +

− +

− +
−

+ +
+

+ +
=

ħ

 (2.18) 

2

2
A BF EB

m
  − + =

ħ
 (2.19) 

2

2 1 0 0 0

1 2 1 0 0

0 1 2 1 01
,

0 0 1 2 1

0 0 0 1 2

10 1 0 0 0

1 10 1 0 0

0 1 10 1 01

0 0 1 10 112

0 0 0 1 10

A
d

B

−  
 

−  
 − 

=  
−  

 −
  
 

 
 

 
 

=  
 

 
  
 

 (2.20) 

1
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4

5

1

2

3

4

5

0 0 0 0

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

F

F

F
V

F

F












 
 

 
 

=  
 

 
  
 

 
 
 
 

=  
 
 
  
 

 (2.21) 

Multiplying both sides of Eq. (2.19) by 
1B−

,we get  
2

1

2
B A V E

m
  −− + =

ħ
 (2.22)  

2
1,

2
H E H B A V

m
  −= = − +

ħ
 (2.23) 

The square matrix H which is the sum of the kinetic 

energy matrix and the potential energy matrix F . The 

stationary states of the time-independent Schrodinger equation 

are represented by the eigenvectors of H, and their 

corresponding energies are represented by the eigenvalues. 

Numerov process has many advantages as it can be applied 

to existing solution techniques without significantly altering 

the way the software is organized or increasing the 

computational cost; for this reason, as well as the 

improvement in accuracy, it is worthwhile to take into account 

the application of Numerov process to the semiconductor 

equation.  

B. Finite Difference method (FDM)  

The Schrodinger equation for a one-dimension quantum 

system [1] is given in Eq. (1.1) 

Using the second order centered derivative formula; we 

can discretise Eq. (1.1) as follows  

1 1

2

2

2

j j j

j j jV E
m h

  
 

+ −− + 
− + = 

 

ħ
 (2.24) 

Where h is the step size 

Let’s suppose we want to solve this equation in the 

region [ , ]x a b .then we can create N+1 grid points such that  

0x a= and Nx b= since the particle is confined in the region 

[ , ]x a b .this leads to the following boundary conditions: 

0 0

0N





=

=
 (2.25) 
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This means we need to compute 
j  

for 1,2,3, , 1j N= − . 

We obtain the following linear system  

1

2

3

4

5

1 1 1

2 2 2

3 3 3

4 4 4

5

2

5

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

0 0 0 0

V

V

V

h

V

E
V











 

 

 

 



−

−   
  

−   
  − 
  

−   
  −
    
  

  
  

  
  

+ =  
  

  
    
  

5

 
 
 
 
 
 
 
  
 

 (2.26) 

Construct the kinetic energy matrix  

  

2

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 2

1

1

2

0 0

T
h

−  
 

−  
 − 
 

− 

−

 
 −
  
 

=  (2.27) 

Construct the potential energy matrix 

     

1

2

3

4

5

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V

V

V

V

V

V

 
 

 
 
 

 
 
  
 

=  (2.28) 

Construct the Hamiltonian matrix 

H T V= +  (2.29) 

Diagonalize H to obtain the eigenvalues (energies) and 

eigenvectors (wavefunction). 

CASE STUDY 

For the infinite square well, consider a particle whose mass 

0.5g is only found in the infinite interval [0,1], such that 

( )
 0 0,1

 otherwise 

x
V x



 
= 


    

 And the boundary conditions are ( )ψ 0 0= , ( )ψ 1 0= and 

using N = 1000. 

The exact solution to Schrodinger equation and the 

numerical solution using Finite Difference method and 

Numerov method is shown in TABLE I. 
 
TABLE I. Comparison between exact and numerical solution of Schrodinger 

equation for first ten values 
N Exact solution Numerov method Finite Difference method 

1 9.8696044 9.869604 9.869596 

2 39.4784176 39.478418 39.478288 

3 88.826439 88.826439 88.825783 

4 157.913670 157.913670 157.911596 

5 246.740110 246.740109 246.735047 

6 355.305758 355.305758 355.295259 

7 483.610616 483.610615 483.591165 

8 631.654682 631.654680 631.621499 

9 799.437956 799.437954 799.384805 

10 986.960440 986.960436 986.879431 

 

From Table I. Numerov method is more accurate than 

Finite Difference method compared to exact solution. 

III. POISSON EQUATION IN 1-D EQUATION CHA PTER (NEXT) SE CTION 3 

Poison equation can be linear equation or non-linear 

equation. It will be shown each one and presents method 

which be used to solve. Linear Poison equation will be solved 

at different boundary condition using finite difference method. 

Non-linear Poison equation will be solved using Newton 

Raphson method 

A. Linear form of Poisson equation 

Paper presents solving Poison equation using finite 

difference method [6, 7, 20, 21] at different boundary 

condition (Dirichlet-Dirichlet boundary conditions, Neumann-

Dirichlet and Dirichlet-Neumann boundary conditions). 

1) Finite Difference Method with  Dirichlet-Dirichlet 

boundary conditions 

Consider a function ( )u x that satisfies the Poisson equation 

Eq. (1.2) where ( )g x is given function on the interval ] , [a b . 

We need to the function ( )u x satisfy the Dirichlet–Dirichlet 

boundary conditions. Au G=  with boundary condition 

( ) , ( )u a u b = = , ( ) ( ) and i i i iu u x g g x= =  

for 0, , 1i N=  + the values of the function and the 

approximation solution on the right. We derive the following 

system for internal nodes by substituting symmetric difference 

equations for the second derivative.  

On the considered interval ] , [a b  we specify a one-

dimensional grid Δ , 0, , 1ix a i x i N= +  =  +  where the 

uniform step of the grid is calculated as  
b a

x h
N

−
 = =  

2

1 2 , 1, ,
2

i
au u h hu i N

g − + = + =   (3.1) 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 

 

 

92 

 Asmaa A. Salama,Mohamed S. Abdel-wahed, D. A. Hammad, Mourad S. Semary, “Review of numerical solutions of differential equations 

applied to semiconductor materials,” International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 12, 

pp. 88-96, 2023. 

The system of linear algebraic equations Eq. (3.1) can be 

represented in matrix form as follows:  

1

2

3

4

5

1

2

1

2

2

2

3

2

4

2

5

2

1

2

2 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2

0

0 0 0 0 1

0 0 0 0 0 0 1 2

N

N

a

N

N b

g

g

g

u

u

u

u

u

u

u

h g u

h

h

h

h g

h

u

g

h g

−

−

−   
  

−   
  −
  

−   
  −
  
  
  
  

  −  

 −
 
 
 
 
 

=
 
 
 


 − 



  (3.2) 

Poisson equation can be solved by the above system of 

matrices  

CASE STUDY  

At N=500 points, a= -1, b = 1, Dirichlet-Dirichlet boundary 

condition ( ) .2u a = − , ( ) .1u b = and
2cos( ( .5))g x= − . 

The output results of poison equation are shown in Fig. 1 

and the absolute error between exact and numerical results is 

shown in Fig. 2. 

2) FDM with Neumann-Dirichlet and Dirichlet-Neumann 

boundary conditions.  

Using Eq. (1.2) with The Neumann-Dirichlet boundary 

conditions satisfied by ( ) ( )'  and a bu a u u b u= = .Consider 

a specific uniform grid for the step-by-step finite difference 

approach Δ
b a

x h
N

−
= =  consisting of 1N + points. 

The coordinates of the grid nodes ix  are calculated by: 

( )ix a i 1 h,i 0,1, N 1= + −  =  +  (3.3) 

We denote by iu  at point ( ):i i ix u u x= and at the same 

point 𝑓𝑖 is the value of the given function in the right hand 

side. We denote by ( )'

i iu u x=  and ( )''  i iu u x=  for the 

boundary conditions. 

By substituting symmetric finite-difference expressions for 

the derivatives, we arrive at the approximation formulas of the 

second order of accuracy for the first derivatives 
2

1 12 , 1, ,i i i iu u u h g i N− +− + = =   (3.4) 

a) The Neumann–Dirichlet boundary conditions 

We will consider the boundary conditions at the left and right 

ends of the interval. This will delete 1u− from the system. 

2

1 2 , 1, ,
2

i
au u h hu i N

g − + = + =   (3.5) 

By considering 0x a h= − , it is possible to use the central 

differences to find the desired solution even at the interval's 

border point with an approximate precision of 
2( )o h . 

We present the vector G , which has components that are 

represented as 

2 2

1

2

, ,
2

, 2,3, , 1

i
a N N b

i i

h hu h u
g

G G g

G gh i N

= + = −

= =  −

 (3.6) 

Consequently, the equations that determine the elements of 

the solution decrease to the form 

2
'

1 1

22
2

23
3

24
4

25
5

21
1

2

1 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2

0

0 0 0 0 1

0 0 0 0 0 0 1 2

2
a

N
N

N
N b

h
u g hu

u
h

u
g

g

g

g

g

h
u

h
u

h

u
h

u
h ug

−
−

− 
 

− 
 −
 

− 
 −
 
 
 
 
 − 

 
  + 
   
   
   
  
  =
  
  
  
  
   
   − 










 (3.7)  

We can solve this system of matrices and produce the results. 

CASE STUDY  

At N=500 points, a = -1, b = 1, ( )u a = .25, ( )u b = -.5 

and
2cos( ( .5))g x= − . The output results after solving 

Poisson equation with Neumann–Dirichlet boundary 

conditions is shown in Fig. 3 and the absolute error between 

exact and numerical solution is shown in Fig. 4. 

Dirichlet–Neumann boundary conditions 

We take into account the symmetric case with the 

Dirichlet-Neumann boundary conditions by analogy with the 

case of the Neumann-Dirichlet boundary conditions. First, let's 

establish a suitable sampling grid for the interval [a, b]. Grid 
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points },  0,  1{ ,   ,  1i Nx i =  + are specified as 𝑥𝑖 = 𝑎 + 

𝑖ℎ. The boundary conditions used are  and  , a bu u  the system 

of finite difference equations is redefined in addition to the 

Poisson equation. The solution value 
1Nu +
 at the ‘virtual’ 

point 
1Nx +
 is represented using the derivative's boundary 

condition, with symmetric central differences used to 

approximate it. Grouping all, we get. 

2

1
2

N
N N bu h u

g
u h 

− − = −  (3.8)  

2 2

1 1

2

, ,
2

, 2, , 1

N
N b a

i i

g
G u G gh

G g

h h u

h i N

= − = −

= =  −

 (3.9) 

Resulting matrix of the equation 

1

2

3

4

5

1

2

1

2

2

2

3

2

4

2

5

2

1

2 '

2 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2

0

0 0 0 0 1

0 0 0 0 0 0 1 1

2

N

N

a

N

N
b

u

u

u

u

u

u

u

h u

h

h

h

h

h

g

g

g

g

g

u

g

h h
g

−

−

−   
  

−   
  −
  

−   
  −
  
  
  
  

  −  

 −
 
 
 
 

=






−
 










(3.10)

  
CASE STUDY  

At N=500 points, a= -1 ,b = 1, ( )u a = .5 and 
' ( )u b = -.25 

and
2cos( ( .5))f x= − .results of solving Poisson equation 

using Dirichlet–Neumann boundary conditions is shown in 

Fig. 5 and absolute error between exact and numerical solution 

for N=300,500 and 700 is shown in Fig. 6. 

 
Fig. 1. Results of Poisson equation at 

Dirichlet-Dirichlet boundary condition 

at N=500. 

 
Fig. 2. Absolute error between exact 

and Finite Difference solutions at 

Dirichlet-Dirichlet boundary 

condition at various values of N. 

 
Fig. 3. Poisson equation results at 

Neumann-Dirichlet boundary 

conditions at N=500. 

 
Fig. 4. Absolute error between exact 

and Finite Difference solutions at 

Neumann- Dirichlet boundary 
conditions at various values of N. 

 

 
Fig. 5. Poisson equation results with 

Dirichlet–Neumann boundary 

conditions at N=500. 

 
Fig. 6.Absolute error between exact 

solution and finite difference 

Dirichlet–Neumann boundary 
conditions solution at various values 

of N. 

 

From the output figures we note that the output results 

become more accurate for larger N and the error decrease. 

IV. NUMERICAL SOLUTION OF CONTINUITY EQUATIONEQU ATION CHA PTER 4 SECTION 1  

In this section, the procedure for the numerical solution of 

continuity equation is explained. The method used is called 

Scharfetter-Gummel method [22-24]. In this method we need 

to find n (electron concentration) at each node in the interval. 

A. Scharfetter-Gummel  

We start with continuity equation for electrons and 

solution is shown step by step. 

1 nJn
G

t xq
R



 
= + + −    (4.1)  

1 n
net

J

xq

n
R

t



 
= + −     (4.2)  

Where, netR G R= − . At steady state 0
n

t




=  
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n
net

dJ
qR

dx
=      (4.3) 

n n net

d dn
qn qD qR

dx dx
 

 
+ = 

 
   (4.4) 

The interval has been divided into subintervals (mesh 

elements) with equal space.  

We need to calculate n  at each node taking into consider 

two assumptions at each node 

J is constant at each node, and V is linear at each node 

For the subinterval from i  to 1i +  the value of J will be 

equal to 1

2
i

J
+

 

1

2

n n
i

dn
qn qD

dx
J  

+
= +    (4.5) 

1

2
i

T n

J
dn

n
dx V qD

 +

+ =     (4.6)  

Where n
T

n

DKT
V

q 
= =  from Eq. (4.6) is first order linear 

differential equation after solving it will be 

/ / 1/2
1( )T Tx V x V i

n

J
e n x e dx c

qD

  +=  +   (4.7)  

We need solution at each node using values of n at boundary 

of nodes 1,i in n +  

At  
i ix x n n=  =     (4.8) 

At  
1 1i ix x n n+ +=  =     (4.9) 

By substitution in equation (4.7) 

/1/2
1

i Tx Vi T
i

n

J V
n c e

qD





−+= +    (4.10)  

1 /1/2
1 1

i Tx Vi T
i

n

J V
n c e

qD




+−+

+ = +    (4.11)  

Subtract equation (4.10) from equation (4.11) 

( )/ Δ

1 1 1i T Tx V xV

i in n c e e
 − −

+ − = −   (4.12)  

( )/

1
1 Δx/V 1i T T

i i

x V

n n
c

e e
 

+

− −

−
=

−
   (4.13)  

By substitution in equation (4.11)    

1/2 1 1

Δ / 1T

i iT
i V

n

J V
n

qD e 

 


+ +

− 

−
= +

−
   (4.14)  

1
1/2 Δ /

1T

i i
i i x V

T

nqD n n
J n

V e


 +
+ −

− 
= − − 

  (4.15)  

( ) ( )
1/2 1Δ / Δ /

Δ / Δ /

Δ 11T T

T Tn
i i ix V x V

x V x VqD
J n n

x e e
 

 
+ +−

− − 
= + 

 − − 
 (4.16)  

Define Bernoulli function  

( )
1x

x
B x

e
=

−
     (4.17) 

1 1

2

Δ Δ

Δ

n
i i

i
T T

qD x x
J B n B n

x V V

 
+

+

    −
= − +    

    
 (4.18) 

11
1 1

2

ΔΔ

Δ

jn i
i

T

i
i

T

VqD V
J B n B n

x V V

−−
−

−

    −
= − +    

    
 (4.19)  

Using continuity equation in discretized form 

net

dJ
qR

dx
=      (4.20)  

1 1i i
net

J J
qR

x

+ −−
=     (4.21)  

From equation (4.18) and (4.19) we can write system of linear 

equations from 1i = to i N=  

1 1
12

1

(
( )

)

n i i i
i i

T T T

i
i net

T

qD V V V
B n B B n

x V V V

V
B n qR

V

− −
−

+

      − −
− +       

      

 −
+ = 

 

(4.22) 

This system can be solved by putting it in matrix form 

An B= where   

1 2

3 4 5

6 7 82

1

0 0 0

0 0

0 0 0

0 0 0

n

N N

M M

M M M
qD

A M M M
x

M M−

 
 
 
 =
 
 
 
 

(1.23) 

Where  

3 2 2 1
1

( )

T T

V V V V
M B B

V V

    − − −
= − +     

    
 (1.24) 

( )3 2

2 3

T

V V
M M B

V

− − 
= =  

 
 (1.25) 

4 3 3 2
4

( )

T T

V V V V
M B B

V V

    − − −
= − +     

    
 (1.26) 

( )4 3

5 6

T

V V
M M B

V

− − 
= =  

 
 (1.27) 

5 4 4 3
7

( )

T T

V V V V
M B B

V V

    − − −
= − +     

    
 (1.28) 

5 4
8

( )

T

V V
M B

V

 − −
=  

 
 (1.29) 
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1 2
1

( )N N
N

T

V V
M B

V

− −
−

 − −
=  

 
 (1.30) 

 

1 1 2( )N N N N
N

T T

V V V V
M B B

V V

− − −
    − − −

= − +     
    

 (1.31) 
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( )

2 1

2

1

2

( )

( )

n
net

T

net
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N Nn
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T

V VqD
qR B

x V

qR

B

qR

V VqD
qR B

x V

−

 − − 
−  

  
 
 

=  
 
 
 − − 

−   
  

     (4.32) 

 

CASE STUDY  

Scharfetter-Gummel Method was used to produce 

numerical solution of continuity equation. The output results 

were compared with exact results in the case of linear 

potential. The electron continuity equation is solved for the 

electron concentration n  at N mesh points. n  is shown 

versus distance x  where: the starting point (a) is at x =0 nm, 

the ending point(b) is at x =L=40 nm , 1x = nm, the  

number of  points 1
b a

N
x

−
= + =41 points ,the 

recombination-generation rate iR is assumed to be zero, the 

electron mobility 1500n =  (cm2/(V-s))( n n tD v= )(where
tv is 

thermal voltage) V is linear vector of N element from 

0V = to 0.1,0.2 0.3V and= , boundary condition  

n(1)=10 and n(N) = 20.  

 

 
Fig. 7. 

Scharfetter-Gummel 
results compared with 

exact solution at V  

change from 0 to 0.1 

 
Fig. 8. 

Scharfetter-Gummel 
results compared with 

exact solution at V  

change from 0 to 0.2 

 
Fig. 9. 

Scharfetter-Gummel 

results compared with 

exact solution at V  

change from 0 to 0.3 

 

Calculating norm error between exact solution and 

scharfetter-Gummel outcomes at various values of linear 

potential from 0V = to 0.1,0.2,0.3,...,0.8V = the results 

was shown in Fig. 10.   

 
Fig. 10.Norm error between exact and Schrafetter-

Gummel outcomes with various range of linear 

potential. 

 

For the same case study above if we take 0V = to 0.1V =  

at 0.5 2x and= . 

 

Fig. 11.Scharfetter-Gummel 

outcomes and exact solution at 

V change from 0 to 0.1 and 

x =0.5nm 

 
Fig. 12.Scharfetter-Gummel 

outcomes and exact solution at 

V change from 0 to 0.1 and 

x =2nm 

 

Calculating norm error between exact solution and 

scharfetter-Gummel outcomes at various values of 

x ( x =0.5 nm, 1nm and 2nm) from 0V = to 0.1V = the 

results was shown in Fig. 12.   

 

 
Fig. 13.Norm error between exact and Scharfetter-

Gummel outcomes with various x . 

 

From the norm error above, we can deduce that the error 

shown is the round-off error not the discretization error. 

Round-off error is the variance between a particular 

algorithm's output produced using exact arithmetic and a 

similar algorithm's output produced using finite-precision, 

rounded arithmetic. Round-off errors accumulates with 

increase the number of calculations.  
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For the same case study, we changed potential from linear 

potential to function 
10 210V x= .At various values of x , 

the output  results are more accurate for smaller of x and 

this implies that the output error in this case is the 

discretization error. Discretization error can usually be 

reduced by using a more finely spaced mesh on the expense of 

increased computational cost. 

 

V. CONCLUSION 

This paper presents several numerical methods of solving 

semiconductor equations. Schrodinger equation is solved 

using Numerov Method and Finite Difference Method. 

Numerov Method produces more accurate results than Finite 

Difference Method compared to exact results. Poisson 

equation is solved using Finite difference method and output 

results are compared to exact results. Also absolute error is 

shown using Matlab. We can see that absolute error between 

exact and numerical outcomes of Poisson equation is very 

small. Continuity equation is solved using Scharfetter-

Gummel Mehtod. The paper presents derivation of 

Scharfetter-Gummel Method. Output results from Scharfetter-

Gummel Mehtod is compared with exact solution and the 

output graph is shown using Matlab. 
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Fig. 14. Scharfetter-Gummel outcomes 
and exact solution at various values of 

x  

 
Fig. 15.Norm error between exact 

and Scharfetter-Gummel outcomes 

with various values of x  
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