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Abstract—This research paper addresses the issue of filtering for 

signal models described by high-order vector difference equations 

(VDEs). The study is divided into two parts. The first part focuses on 

the filtering problem for a linear second-order VDE driven by white 

noise, while the second part extends these findings to high-order models 

of the same structure. The study develops a recursive equation for the 

filtered estimate based on the linear second-order model. The 

innovations approach is directly applied to the second-order model to 

derive a recursion for the filtered estimate. The resulting filter is defined 

as a second-order recursion that preserves the mathematical structure 

of the given model with innovations feedback loops. The study shows 

that the innovations satisfy a first-order recursion in terms of the 

filtered estimates and the measurements. The study formulates 

equations for the estimation of the filtered values and also determines 

the covariance matrices for the associated errors, based on the 

respective error values. This study presents the generalization of 

filtering results for high-order models of the same structure in the 

second part of the paper. The research considers a pth-order vector 

difference equation (VDE) model with additive white noise and a linear 

combination of the signal process with additive white noise as the 

observation process. The study develops a one-stage prediction 

estimator for the pth-order VDE signal model and presents the 

characterization of the innovations sequence in terms of the one-stage 

prediction estimates. The study also derives formulas for the estimator 

gains and demonstrates that the resulting estimator is a pth-order 

system that preserves the form of the given model with innovations 

feedback loops. The study further shows that the well-known Kalman 

filter is a special case of these findings.  
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I. INTRODUCTION 

This research paper presents a theory of recursive estimation 

for stochastic processes, represented as linear high-order vector 

difference equations (VDEs). This modeling approach has 

gained popularity in various fields, such as image processing 

and elastic and mechanical systems. The study develops a 

recursive equation for the one-stage prediction estimate based 

on a linear second-order VDE model. The study is structured 

into two primary parts. The first part focuses on deriving the 

filtered estimate based on the second-order VDE signal model, 

while the second part is dedicated to developing the one-stage 

prediction estimate based on a linear high-order model of the 

same structure. The innovations approach is applied directly to 

the assumed signal model in both cases. The study shows that 

the resulting estimator in both cases has the same mathematical 

structure as the given model with innovations feedback loops. 

Various methods of representing discrete-time stochastic 

processes, such as state-space realization, transfer functions, 

and vector difference equations, have been used in this 

research. 

II. FILERING BASED ON SECOND-ORDER VDE MODEL 

2.1. The conditional Mean 

The signal model that was used by Iskanderani [11], with 

the same assumptions, is considered here. However, for sake of 

completeness, the basic assumptions concerning this model are 

found in the Appendix. The signal model is a linear second-

order VDE given by: 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐷𝑘𝑥𝑘−1 + Γ𝑘𝜔𝑘            (1) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐸𝑘𝑥𝑘−1 + 𝑣𝑘                                       (2) 

This research article focuses on the subsequent 

development of equations (1) and (2) and the assumptions 

mentioned in the Appendix. The study employs an innovations 

approach and the second-order vector difference equation 

(VDE) signal model to obtain a recursive equation for the 

filtered estimate, thereby developing a recursive equation for 

the conditional mean: 

�̂�𝑘+1|𝑘+1 = 𝐸[𝑥𝑘+1|𝑌𝑘+1]            (3) 

where, 𝑌𝑘+1 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑘+1}    The function �̂�𝑘|𝑘  is 

referred to as the filtered estimate of 𝑥𝑘 given 𝑌𝑘. Define the set 

�̃�𝑘+1 ≜ {�̃�1, �̃�2, . . . , �̃�𝑘+1}            (4) 

where {�̃�𝑘+1}  is called the innovations sequence of {𝑦𝑘} 

given by  

�̃�𝑘+1 = 𝑦𝑘+1 − 𝐸[𝑦𝑘+1|𝑌𝑘], 
   = 𝑦𝑘+1 − 𝐶𝑘+1�̂�𝑘+1|𝑘 − 𝐸𝑘+1�̂�𝑘|𝑘   (5) 

with the initial condition  

�̃�1 = 𝑦1 − 𝐸[𝑦1] = 𝑦1 − 𝐶1�̅�1 − 𝐸1�̅�0 (6)  

This research article explores the properties of the 

innovations sequence defined by equations (5) and (6) and their 

exploitation in subsequent analysis. The sequence has three 

distinct properties, namely a zero mean, independence of the set 

�̃�𝑘, and spanning of the same space by the sets 𝑌𝑘 and �̃�𝑘. The 

proof of these properties is discussed by Gevers  9 . In the 

subsequent development, the assumption is made that �̅�0 =
�̅�1 = 0 , and an approach is employed that utilizes the 

independence of the innovations for writing purposes as 

follows: 

�̂�𝑘+1|𝑘+1 = 𝐸[𝑥𝑘+1|𝑌𝑘+1] = 𝐸[𝑥𝑘+1|𝑌𝑘] + 𝐸[𝑥𝑘+1|�̃�𝑘+1] =

𝐴𝑘�̂�𝑘|𝑘 + 𝐷𝑘𝐸[𝑥𝑘−1|𝑌𝑘−1] + 𝐷𝑘𝐸[𝑥𝑘−1|�̃�𝑘] +
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𝐸[𝑥𝑘+1|�̃�𝑘+1] = 𝐴𝑘�̂�𝑘|𝑘 + 𝐷𝑘 �̂�𝑘−1|𝑘−1 + 𝐷𝑘𝐸[𝑥𝑘−1|�̃�𝑘] +

𝐸[𝑥𝑘+1|�̃�𝑘+1] = 𝐴𝑘�̂�𝑘|𝑘 + 𝐷𝑘 �̂�𝑘−1|𝑘−1 + 𝐷𝑘𝐻𝑘
1�̃�𝑘 + 𝐻𝑘+1

2 �̃�𝑘+1

 (7) 

where the 𝑛 × 𝑚  gain matrices 𝐻𝑘
1  and 𝐻𝑘

2  are defined 

respectively by  

𝐻𝑘
1 ≜ 𝑐𝑜𝑣(𝑥𝑘−1, �̃�𝑘)[𝑐𝑜𝑣(�̃�𝑘, �̃�𝑘)]−1 (8) 

𝐻𝑘
2 ≜ 𝑐𝑜𝑣(𝑥𝑘 , �̃�𝑘)[𝑐𝑜𝑣(�̃�𝑘 , �̃�𝑘)]−1 (9) 

It is interesting to recognize that equation (1.7) is a second-

order recursion in terms of the filtered estimates which keeps 

the form of the given model. This simple observation has not 

previously been observed for higher-order models of the form 

considered in this paper. Given the filtered estimate �̂�𝑘|𝑘, the 

one-stage prediction estimate can be written as: 

�̂�𝑘+1|𝑘 = 𝐸[𝑥𝑘+1|𝑌𝑘] = 𝐸[𝑥𝑘+1|𝑌𝑘] + 𝐸[𝑥𝑘+1|�̃�𝑘+1] −

𝐸[𝑥𝑘+1|�̃�𝑘+1] = 𝐸[𝑥𝑘+1|𝑌𝑘+1] − 𝐸[𝑥𝑘+1|�̃�𝑘+1] = �̂�𝑘+1|𝑘+1 −

𝐻𝑘+1
2 �̃�𝑘+1  (10) 

2.2.    Gains Derivation 

Define the prediction and filtered error vectors respectively by  

�̃�𝑘|𝑘−1 = 𝑥𝑘 − �̂�𝑘|𝑘−1 (11) 

�̃�𝑘|𝑘 = 𝑥𝑘 − �̂�𝑘|𝑘    . (1.12) (12) 

The innovations sequence �̃�𝑘+1 can be written as  

�̃�𝑘+1 = 𝐶𝑘�̃�𝑘+1|𝑘 + 𝐸𝑘�̃�𝑘|𝑘 + 𝑣𝑘   (13) 

with Eq. (6) as its initial condition. Define also the covariance 

matrices by the relations  

Σ𝑘|𝑘−1  ≜ 𝐸[�̃�𝑘|𝑘−1�̃�𝑘|𝑘−1
𝑇 ]  (14) 

Σ𝑘|𝑘 ≜ 𝐸[�̃�𝑘|𝑘�̃�𝑘|𝑘
𝑇 ]  (15) 

Π𝑘|𝑘−1 ≜ 𝐸[�̃�𝑘−1|𝑘−1�̃�𝑘|𝑘−1
𝑇 ] (16) 

It is easy to see that:  

𝑐𝑜𝑣(�̃�𝑘 , �̃�𝑘) ≜ 𝐾𝑘 = 𝐶𝑘Σ𝑘|𝑘−1𝐶𝑘
𝑇 + 𝐶𝑘Π𝑘|𝑘−1

𝑇 𝐸𝑘
𝑇 +

                𝐸𝑘Π𝑘|𝑘−1𝐶𝑘
𝑇    + 𝐸𝑘Σ𝑘−1|𝑘−1𝐸𝑘

𝑇 + 𝑅𝑘  (17) 

Here, 𝐾𝑘  is an 𝑚 × 𝑚 positive- definite matrix, since 𝑅𝑘  was 

assumed to be positive-definite matrix See Appendix for overall 

assumptions involved in this section of the paper. Next the gain 

matrix 𝐻𝑘
1 is evaluated as follows:  

 𝐻𝑘
1 = 𝑐𝑜𝑣(𝑥𝑘−1, �̃�𝑘)[𝑐𝑜𝑣(�̃�𝑘, �̃�𝑘)]−1 = [Π𝑘|𝑘−1𝐶𝑘

𝑇 +

                                Σ𝑘−1|𝑘−1𝐸𝑘
𝑇]𝐾𝑘

−1  (18) 

The gain matrix 𝐻𝑘
2 is computed in a similar way as  

 𝐻𝑘
2 = 𝑐𝑜𝑣(𝑥𝑘 , �̃�𝑘)[𝑐𝑜𝑣(�̃�𝑘 , �̃�𝑘)]−1 = [Σ𝑘|𝑘−1𝐶𝑘

𝑇 +

Π𝑘|𝑘−1
𝑇 𝐸𝑘

𝑇]𝐾𝑘
−1   (19) 

The gain matrices 𝐻𝑘
1  and 𝐻𝑘

2  therefore depend on the 

covariance matrices Σ𝑘|𝑘−1, Π𝑘|𝑘−1, and Σ𝑘|𝑘. In the following 

section, recursive formulas for the covariance matrices are 

derived. 

2.3.    Covariance Matrices 

In this section, the covariance matrices are derived. Subtracting 

Eq. (7) from Eq. (1) gives  

 �̃�𝑘+1|𝑘+1 = 𝐴𝑘�̃�𝑘|𝑘 + 𝐷𝑘 �̃�𝑘−1|𝑘−1 + Γ𝑘𝜔𝑘 − 𝐻𝑘+1
2 �̃�𝑘+1 −

                               𝐷𝑘𝐻𝑘
1�̃�𝑘  (20) 

And from Eq. (10) and Eq. (11) 

�̃�𝑘+1|𝑘+1 = �̃�𝑘+1|𝑘 − 𝐻𝑘+1
2 �̃�𝑘+1 (21) 

And from Eq. (20) and Eq. (21)  

 �̃�𝑘+1|𝑘 = 𝐴𝑘�̃�𝑘|𝑘−1 + 𝐷𝑘 �̃�𝑘−1|𝑘−1 + Γ𝑘𝜔𝑘 − (𝐴𝑘𝐻𝑘
2 +

                                 𝐷𝑘𝐻𝑘
1)�̃�𝑘    (22) 

Then from Eq. (15) ad Eq. (21)  

 Σ𝑘|𝑘 = 𝐸[(�̃�𝑘|𝑘−1 − 𝐻𝑘
2�̃�𝑘)(�̃�𝑘|𝑘−1 − 𝐻𝑘

2�̃�𝑘)𝑇] = Σ𝑘|𝑘−1 −

                     𝐻𝑘
2𝐶𝑘Σ𝑘|𝑘−1 − 𝐻𝑘

2𝐸𝑘Π𝑘|𝑘−1   (23) 

Next from Eq. (14) and Eq. (22) and some mathematical 

manipulations  

 Σ𝑘+1|𝑘 = 𝐸[�̃�𝑘+1|𝑘�̃�𝑘+1|𝑘
𝑇 ] = (𝐷𝑘 − 𝐿𝑘𝐸𝑘)(Σ𝑘−1|𝑘−1𝐷𝑘

𝑇 +

Π𝑘|𝑘−1𝐴𝑘
𝑇)   + (𝐴𝑘 − 𝐿𝑘𝐶𝑘)(Π𝑘|𝑘−1

𝑇 𝐷𝑘
𝑇 + Σ𝑘|𝑘−1𝐴𝑘

𝑇) +

      Γ𝑘𝑄𝑘Γ𝑘
𝑇   (24) 

where 𝐿𝑘 is defined by the matrix relation  

𝐿𝑘 ≜ 𝐴𝑘𝐻𝑘
2 + 𝐷𝑘𝐻𝑘

1   (25) 

Finally from Eq. (16), Eq. (21) and Eq. (22) 

Π𝑘+1|𝑘 = 𝐸[�̃�𝑘|𝑘�̃�𝑘+1|𝑘
𝑇 ] = Σ𝑘|𝑘𝐴𝑘

𝑇 + [Π𝑘|𝑘−1
𝑇 −

                 𝐻𝑘
2𝐶𝑘Π𝑘|𝑘−1

𝑇 − 𝐻𝑘
2𝐸𝑘Σ𝑘−1|𝑘−1]𝐷𝑘

𝑇   (26) 

The recursive equations are initialized by (A.5) - (A.7) of the 

Appendix.  

2.4.    Covariance Matrices 

The innovations can be represented in terms of the filtered 

estimates as follows  

 �̃�𝑘+1 + 𝐶𝑘+1𝐷𝑘𝐻𝑘
1�̃�𝑘 = −(𝐶𝑘+1𝐴𝑘 + 𝐸𝑘+1)�̂�𝑘|𝑘 −

                      𝐶𝑘+1𝐷𝑘�̂�𝑘−1|𝑘−1 + 𝑦𝑘+1 (27) 

with the initial condition (1.6). Hence, the innovations assure a 

first-order recursion forced by the filtered estimates.  

2.5. Main Results 

These results are summarized in the following theorem. 

Theorem 1 

 The filter for (1.1) and (1.2), with the stated assumptions 

mentioned in the appendix, is given by  

�̂�𝑘+1|𝑘+1 = 𝐴𝑘�̂�𝑘|𝑘 + 𝐷𝑘 �̂�𝑘−1|𝑘−1 + 𝐷𝑘𝐻𝑘
1�̃�𝑘 + 𝐻𝑘+1

2 �̃�𝑘+1 (28) 

where 𝑘 = 1,2, …, and initialized by  

�̂�0|0 = �̅�0    ,    �̂�1|1 = �̅�1  (29) 

 The innovations satisfy  

 �̃�𝑘+1 + 𝐶𝑘+1𝐷𝑘𝐻𝑘
1�̃�𝑘 = 𝑦𝑘+1 − (𝐶𝑘+1𝐴𝑘 + 𝐸𝑘+1)�̂�𝑘|𝑘 −

           𝐶𝑘+1𝐷𝑘 �̂�𝑘−1|𝑘−1 (30) 

where 𝑘 = 2,3, …, and inintialized by the initial condition  

�̃�1 = 𝑦1 − 𝐶1�̅�1𝐸1�̅�0   (31) 

The gain matrices 𝐻𝑘
1  and 𝐻𝑘

2  are given by Eq. (18) and Eq. 

(19). The associated covariances are given by Eq. (23) – Eq. 

(26).  

In addition, the one-stage prediction estimate is given by  

�̂�𝑘+1|𝑘 = �̂�𝑘+1|𝑘+1 − 𝐻𝑘
2�̃�𝑘+1  (32) 

III. FILERING BASED ON HIGH-ORDER VDE MODEL 

3.1. Signal Model and Basic Assumptions 

Here, the model for the signal being considered is expressed as 

a p’th-order linear VDE in the form of: 

    𝑥𝑘+1 =  ∑𝑝
𝑗=1 𝐴𝑘

𝑗
𝑥𝑘−𝑗+1 + Γ𝑘𝜔𝑘 (33) 

       𝑦𝑘 = ∑𝑝
𝑗=1 𝐶𝑘

𝑗
𝑥𝑘−𝑗+1 + 𝑣𝑘 (34) 
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where 𝑘 = 1,2, …, and 𝑥1, 𝑥0, 𝑥−1, … , 𝑥−𝑝+2 are initial vectors, 

{𝑥𝑘} is an 𝑛-vector stochastic process. 𝐴𝑘
𝑗

 , 𝑗 = 1, … , 𝑝 are real 

𝑛 × 𝑛  matrices, Γ𝑘  is 𝑛 × 𝑟  real matrix, {𝜔𝑘}  is an 𝑟 -vector 

zero mean gaussian white-noise process with covariance  

𝐸[𝜔𝑘𝜔𝑙
𝑇] = 𝑄𝑘𝛿𝑘𝑙  (35) 

where 𝑄𝑘  is 𝑟 × 𝑟  matrix. {𝑦𝑘}  is an 𝑚 -vector output 

measurement process, 𝐶𝑘
𝑗
  , 𝑗 = 1,2, … , 𝑝  are real 𝑚 × 𝑛 

matrices, {𝑣𝑘} is an 𝑚-vector zero mean gaussian white-noise 

process with covariance  

𝐸[𝑣𝑘𝑣𝑙
𝑇] = 𝑅𝑘𝛿𝑘𝑙  (36) 

Assume the following: 

 (1) The input noise {𝑤𝑘}  and the output noise {𝑣𝑘}  are 

independent. 

 (2) The initial vectors 𝑥0, 𝑥1, 𝑥−1, …,  are jointly gaussian 

random vectors with means 

𝐸[𝑥𝑗] = �̅�𝑗    , 𝑗 = −𝑝 + 2, −𝑝 + 3, … ,0,1  (37) 

 (3) The initial vectors are independent of {𝑤𝑘} and {𝑣𝑘} . 

 (4) 𝑅𝑘 is an 𝑚 × 𝑚 positive-definite matrix for each 𝑘.  

3.2. The One-stage Prediction Estimator for the p’th-order 

System 

 It is desired to develop a recursive equation for the conditional 

mean  

�̂�𝑘+1|𝑘 = 𝐸[𝑥𝑘+1|𝑌𝑘] (38) 

 where 𝑌𝑘 = {𝑦1 , 𝑦2, … , 𝑦𝑘} is the observation sequence. Define 

the set �̃�𝑘 = {�̃�1, �̃�2, … , �̃�𝑘}  where {�̃�𝑘}  is the innovations 

sequence defined by 

�̃�𝑘 = 𝑦𝑘 − 𝐸[𝑦𝑘|𝑌𝑘−1]  , 𝑘 = 𝑝, 𝑝 + 1, …,  (39) 

with the initial conditions  

�̃�𝑚 = 𝑦𝑚 − ∑𝑝
𝑖=1 𝐶𝑚

𝑗
�̅�𝑚−𝑗+1

𝑗
 , 𝑚 = 1,2, … , 𝑝 − 1 (40) 

Without loss of generality, assume �̅�1 = �̅�0 = ⋯ = �̅�−𝑝+2 = 0 

in the subsequent development. 

Theorem 2 

 The one-stage prediction estimator for (2.1) and (2.2), with the 

stated assumptions, is given by  

�̂�𝑘+1|𝑘 = ∑𝑝
𝑗=1 𝐴𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 + ∑𝑝

𝑖=1 𝐺𝑘
𝑖 �̃�𝑘−𝑖+1  ,   k =  1,2, …  

 (41) 

with the initial conditions  

�̂�𝑗|𝑗−1 = �̅�𝑗   , 𝑗 = −𝑝 + 2, −𝑝 + 3, … , −1,0,1 (42) 

where the 𝑛 × 𝑚 gain matrices are given by  

𝐺𝑘
𝑖 !̅ ∑𝑖

𝑚=1 𝐴𝑘
𝑝−𝑚+1

𝐸[𝑥𝑘−𝑝+𝑚�̃�𝑘−𝑝+𝑖
𝑇 ]𝐾𝑘−𝑝+𝑖

−1   (43) 

𝐾𝑗 = 𝐸[�̃�𝑗�̃�𝑗
𝑇]   (44) 

where 𝑖 = 1,2, … , 𝑝  and �̃�𝑘  is the innovations sequence, 

defined by Eq. (39), to be characterized in Theorem 3. 

Proof: 

 �̂�𝑘+1|𝑘 = 𝐸[𝑥𝑘+1|𝑌𝑘] = 𝐸[∑𝑝
𝑗=1 𝐴𝑘

𝑗
𝑥𝑘−𝑗+1 + Γ𝑘𝜔𝑘|𝑌𝑘] =

𝐴𝑘
1 𝐸[𝑥𝑘|{�̃�𝑘 , 𝑌𝑘−1}] + 𝐴𝑘

2𝐸[𝑥𝑘−1|{�̃�𝑘 , �̃�𝑘−1, 𝑌𝑘−2}]    + ⋯ +
𝐴𝑘

𝑝
𝐸[𝑥𝑘−𝑝+1|{�̃�𝑘 , �̃�𝑘−1, ⋯ , �̃�𝑘−𝑝+1, 𝑌𝑘−𝑝}] = 𝐴𝑘

1 �̂�𝑘|𝑘−1 +

𝐴𝑘
1 𝐸[𝑥𝑘|�̃�𝑘]    + 𝐴𝑘

2 �̂�𝑘−1|𝑘−2 + 𝐴𝑘
2𝐸[𝑥𝑘−1|�̃�𝑘] +

𝐴𝑘
2𝐸[𝑥𝑘−1|�̃�𝑘−1]    + ⋯ + 𝐴𝑘

𝑝
�̂�𝑘−𝑝+1|𝑘−𝑝 +

𝐴𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘]    + ⋯ + 𝐴𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−𝑝] =

∑𝑝
𝑗=1 𝐴𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 + {𝐴𝑘

1 𝐸[𝑥𝑘|�̃�𝑘] + 𝐴𝑘
2𝐸[𝑥𝑘−1|�̃�𝑘]    + ⋯ +

𝐴𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘]}    + {𝐴𝑘
2𝐸[𝑥𝑘−1|�̃�𝑘−1] +

𝐴𝑘
3𝐸[𝑥𝑘−2|�̃�𝑘−1]    + ⋯ + 𝐴𝑘

𝑝
𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−1]} + ⋯   +

𝐴𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−𝑝+1] = ∑𝑝
𝑗=1 𝐴𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 +

{𝐴𝑘
1 𝑐𝑜𝑣(𝑥𝑘 , �̃�𝑘) + 𝐴𝑘

2𝑐𝑜𝑣(𝑥𝑘−1, �̃�𝑘)    + ⋯ +
𝐴𝑘

𝑝
𝑐𝑜𝑣(𝑥𝑘−𝑝+1, �̃�𝑘)}�̃�𝑘    + {𝐴𝑘

2𝑐𝑜𝑣(𝑥𝑘−1, �̃�𝑘−1) +

𝐴𝑘
3𝑐𝑜𝑣(𝑥𝑘−2, �̃�𝑘−1)    + ⋯ + 𝐴𝑘

𝑝
𝑐𝑜𝑣(𝑥𝑘−𝑝+1, �̃�𝑘−1)}�̃�𝑘−1 +

⋯   + 𝐴𝑘
𝑝

𝑐𝑜𝑣(𝑥𝑘−𝑝+1, �̃�𝑘−𝑝+1)�̃�𝑘−𝑝+1 =

∑𝑝
𝑗=1 𝐴𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 + ∑𝑝

𝑖=1 𝐺𝑘
𝑖 �̃�𝑘−𝑖+1                                  (45) 

The gains 𝐺𝑘
𝑖  ’s are defined by equations (43) and (44), where 

𝑖 = 1,2, … , 𝑝. An interesting observation is that the estimator 

for one-stage prediction follows a p'th order recursion, 

maintaining the structure of the signal model, including 

feedback loops from innovations. The expressions for the 

innovations are given by equations (39) and (40). However, as 

the estimator is presented in terms of the one-stage prediction 

estimate, it would be beneficial to express the innovations using 

the same estimate. In the following section, Theorem 3 provides 

a derivation of this expression to enhance the estimator's utility.  

3.3. Innovations 

Theorem 3 

 The innovations sequence of the observation process Eq. (34) 

can be written as 𝑝 − 1’st-order recurrence relation in terms of 

the one-stage prediction estimates as  

�̃�𝑘 + ∑𝑝−1
𝑖=1 𝐻𝑘

𝑖 �̃�𝑘−𝑖 = 𝑦𝑘 − ∑𝑝
𝑗=1 𝐶𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗  , 𝑘 = 𝑝, 𝑝 +

1, … (46) 

with the initial conditions  

�̃�𝑚 = 𝑦𝑚 − ∑𝑝
𝑗=1 𝐶𝑚

𝑗
�̅�𝑚−𝑗+1  , 𝑚 = 1,2, … , 𝑝 − 1 (47) 

where the gains 𝐻𝑘
𝑖 ’s are defined by  

𝐻𝑘
𝑖 ≜ ∑𝑝

𝑚=𝑖+1 𝐶𝑘
𝑚𝐸[𝑥𝑘−𝑚+1�̃�𝑘−𝑖

𝑇 ]𝐸[�̃�𝑘−𝑖�̃�𝑘−𝑖
𝑇 ]𝐾𝑘−𝑖

−1   (48) 

Proof: 

 From the independence of the output noise and the 

observations sequence, the sequence �̃�𝑘 can be written as  

 �̃�𝑘 = 𝑦𝑘 − 𝐸[𝑦𝑘|𝑌𝑘−1] = 𝑦𝑘 − 𝐶𝑘
1𝐸[𝑥𝑘|𝑌𝑘−1] −

𝐶𝑘
2𝐸[𝑥𝑘−1|𝑌𝑘−1]    − ⋯ − 𝐶𝑘

𝑝
𝐸[𝑥𝑘−𝑝+1|𝑌𝑘−1] = 𝑦𝑘 −

𝐶𝑘
1�̂�𝑘|𝑘−1 − 𝐶𝑘

2𝐸[𝑥𝑘−1|{�̃�𝑘−1, 𝑌𝑘−2}] − ⋯   −

𝐶𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|{�̃�𝑘−1, �̃�𝑘−2, ⋯ , �̃�𝑘−𝑝+1, 𝑌𝑘−𝑝}] = 𝑦𝑘 −

𝐶𝑘
1�̂�𝑘|𝑘−1 − 𝐶𝑘

2�̂�𝑘−1|𝑘−2 − ⋯ − 𝐶𝑘
𝑝

�̂�𝑘−𝑝+1|𝑘−𝑝    −

𝐶𝑘
2𝐸[𝑥𝑘−1|�̃�𝑘−1] − 𝐶𝑘

3𝐸[𝑥𝑘−2|�̃�𝑘−1] − ⋯ −
𝐶𝑘

𝑝
𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−1]    − 𝐶𝑘

3𝐸[𝑥𝑘−2|�̃�𝑘−2 − 𝐶𝑘
4𝐸[𝑥𝑘−3|�̃�𝑘−2] −

⋯ − 𝐶𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−1]    − ⋯ − 𝐶𝑘
𝑝

𝐸[𝑥𝑘−𝑝+1|�̃�𝑘−𝑝+1] =

𝑦𝑘 − ∑𝑝
𝑗=1 𝐶𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 − ∑𝑝−1

𝑖=1 𝐻𝑘
𝑖 �̃�𝑘−𝑖    (49) 

where  

𝐻𝑘
𝑖 ≜ ∑𝑝

𝑚=𝑖+1 𝐶𝑘
𝑚𝐸[𝑥𝑘−𝑚+1�̃�𝑘−𝑖

𝑇 ]𝐸[�̃�𝑘−𝑖�̃�𝑘−𝑖
𝑇 ]−1   (50) 

  General recursive formulas for the associated covariance 

matrices will not be given here since the general formulas are 

extremely complicated. However, for small 𝑝 the formulas can 

easily be found. 

3.4.    General Results 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 

 

 

154 
 

Ahmed I. Iskanderani, “A New Approach to Linear Filtering and Prediction Based on High-Order Signal Models,” International Journal of 

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 11, pp. 151-155, 2023. 

The overall results are summarized in the following theorem. 

Theorem 4  

The one-stage prediction estimator for equations (33) and (34) 

is given by  

 �̂�𝑘+1|𝑘 = ∑𝑝
𝑗=1 𝐴𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗 + ∑𝑝

𝑖=1 𝐺𝑘
𝑖 �̃�𝑘−𝑖+1  , 𝑘 = 1,2, … 

 (51) 

with the initial condition  

�̂�𝑗|𝑗−1 = �̅�𝑗   , 𝑗 = −𝑝 + 2, −𝑝 + 3, … , −1,0,1  (52) 

The innovations are given by  

 �̃�𝑘 + ∑𝑝−1
𝑖=1 𝐻𝑘

𝑖 �̃�𝑘−𝑖 = 𝑦𝑘 − ∑𝑝
𝑗=1 𝐶𝑘

𝑗
�̂�𝑘−𝑗+1|𝑘−𝑗  , 𝑘 = 𝑝, 𝑝 +

1, …   (53) 

with the initial conditions  

�̃�𝑚 = 𝑦𝑚 − ∑𝑝
𝑗=1 𝐶𝑚

𝑗
�̅�𝑚−𝑗+1 , 𝑚 = 1,2, … , 𝑝 − 1  (54) 

The 𝑛 × 𝑚 gain matrices are given by  

𝐺𝑘
𝑖 = ∑𝑖

𝑚=1 𝐴𝑘
𝑝−𝑚+1

𝐸[𝑥𝑘−𝑝+𝑚�̃�𝑘−𝑝+𝑖
𝑇 ]𝐾𝑘−𝑝+𝑖

−1   (55) 

𝐾𝑘 = ∑𝑝
𝑗=1 ∑𝑝

𝑖=1 𝐶𝑘
𝑗
𝐸[�̃�𝑘−𝑗+1|𝑘−1�̃�𝑘−𝑖+1|𝑘−1]𝐶𝑘

𝑖𝑇 + 𝑅𝑘  (56) 

where 𝑖 = 1,2, … , 𝑝, and  

𝐻𝑘
𝑖 = ∑𝑝

𝑚=𝑖+1 𝐶𝑘
𝑚𝐸[𝑥𝑘−𝑚+1�̃�𝑘−𝑖

𝑇 ]𝐸[�̃�𝑘−𝑖�̃�𝑘−𝑖
𝑇 ]𝐾𝑘−𝑖

−1  (57) 

 3.5.    Kalman Filter as A Special Case 

If 𝑝 = 1  the signal model (33) and (34) reduces to the 

conventional first- order state-variable model  

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + Γ𝑘𝜔𝑘(2.26)𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 (58) 

The one-stage prediction estimator (Kalman filter) for this 

model is immediately found by letting 𝑝 = 1 in Theorem 4. 

IV. CONCLUSION 

In this theoretical paper, the filtering of stochastic processes 

through recursive methods is explored. Specifically, vector 

difference equations are utilized as signal models. The 

innovations method is directly applied to derive the filtered 

estimate for the second-order model and the one-stage 

prediction estimate for the general p’th-order signal model. For 

both these filtering scenarios, it is established that the filter 

dynamics can be described by a linear system that maintains the 

mathematical structure of the given model, including 

innovations feedback loops. While this property is well-known 

for the Kalman filter, it has not been recognized for higher-

order models until now. Additionally, the innovations can be 

computed using a straightforward recurrence relation based on 

the filtered estimates. These filters possess a crucial recursive 

form, making them highly practical for processing 

measurements and obtaining digital computer-based estimates.  

APPENDIX 

Second-Order Signal Model and Basic Assumptions 

The signal model is represented by a linear second-order 

VDE in the form of (1) and (2), where 𝑘 = 1,2, …, . The 

stochastic process {𝑥𝑘} is an n-vector, with 𝑥0 and 𝑥1 as initial 

vectors. Real n×n matrices 𝐴𝑘, and 𝐷𝑘are used, along with an 

r-vector zero-mean Gaussian white-noise process {𝜔𝑘} having 

a covariance of 

𝐸[𝜔𝑘𝜔𝑙
𝑇] = 𝑄𝑘𝛿𝑘𝑙 (𝐴. 1) 

 where, 𝑄𝑘 is an 𝑟 × 𝑟 matrix, and 𝛿 represents the Kronecker 

delta function. Additionally, an n×r matrix Γ𝑘 is employed. The 

output measurement process {𝑦𝑘}  is an m-vector, with real 

𝑚 × 𝑛 measurement matrices 𝐶𝑘 and 𝐸𝑘 .  
{𝑣𝑙} is an 𝑚-vector, zero mean gaussian white-noise process 

with covariance 

𝐸[𝑣𝑘𝑣𝑙
𝑇] = 𝑅𝑘𝛿𝑘𝑙 (A.2) 

Assume also the following: 

 (1) The input noise {𝜔𝑘}  and the output noise {𝑣𝑘}  are 

independent in the sense that  

𝑐𝑜𝑣(𝜔𝑘 , 𝑣𝑙) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑘, 𝑙 = 1,2, …  (A.3) 

 (2) The initial vectors 𝑥0 and 𝑥1 are jointly gaussian random 

vectors with means  

𝐸[𝑥0] = �̅�0   𝐸[𝑥1] = �̅�1  (A.4) 

and covariances  

𝐸[(𝑥0 − �̅�0)(𝑥0 − �̅�0)𝑇] = Σ0|0  (A.5) 

𝐸[(𝑥1 − �̅�1)(𝑥1 − �̅�1)𝑇] = Σ1|0  (A.6) 

𝐸[(𝑥0 − �̅�0)(𝑥1 − �̅�1)𝑇] = Π1|0  (A.7) 

 (3) The initial vectors 𝑥0 and 𝑥1 are independent of {𝑣𝑘} and 

{𝜔𝑘} in the sense that  

𝐸[𝑥𝑖𝜔𝑘
𝑇] = 0 ,    𝑓𝑜𝑟  𝑖 = 0,1  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … (A.8) 

𝐸[𝑥𝑖𝑣𝑘
𝑇] = 0 ,    𝑓𝑜𝑟  𝑖 = 0,1  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … (A.9) 

 (4) 𝑅𝑘 is an 𝑚 × 𝑚 positive-definite matrix for each 𝑘.  
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