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Abstract— In this paper we talk about graph-level characteristics 

and graph kernels, which will enable us to forecast the behaviour of 

entire graphs. Therefore, the objective is to have a single feature that 

describes the overall graph's structure. We discussed graph kernels, 

specifically the graphlet kernel and the WL, which stands for the 

Weisfeiler-Lehman graph kernel. Its runtime scales only linearly in 

the number of edges of the graphs and the length of the Weisfeiler-

Lehman graph sequence. Finally, we give some WL use cases from 

the literature.   
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I. INTRODUCTION  

There are properties at the node and edge levels that can be 

used to forecast a graph [20]. However, in this paper will now 

talk about graph-level characteristics and graph kernels [11], 

which will enable us to forecast the behaviour of entire graphs 

[5]. Therefore, the objective is to have a single feature that 

describes the overall graph's structure. For instance, if you 

have a graph like the one in Figure 1, you may think about 

how you would describe its structure in words.  
 

 
Fig. 1. Connected graph with eight nodes (A to F). 

 

It appears to have two loosely connected portions, a lot of 

edges connecting the nodes in each part, and just one edge 

between nodes D and E connecting the two sections.  

How do we develop the feature descriptor that will enable 

us to describe the structure, then? And to accomplish this, 

we'll employ kernel-level techniques. Additionally, traditional 

machine learning in graph-level prediction uses kernel 

approaches extensively. Instead of creating a feature vector, 

the goal is to create a kernel. Let's briefly introduce and 

explain what a kernel is. Therefore, a kernel between graphs G 

and G' returns a real number and assesses the similarity 

between these two graphs or, more generally, the similarity 

between other data points. 

Thus, a kernel matrix [12] is a matrix that merely calculates 

the degree of similarity between all sets of data points or 

graphs. Additionally, the kernel matrix must be positive semi-

definite for a kernel to be considered genuine. That is to say, it 

must have positive eigenvalues [7], for instance, and as a 

result, it must be a symmetric matrix. The existence of a 

feature representation, such that the kernel between two 

graphs is just a feature representation of the first graph dot 

product with the feature representation of the second graph, is 

another crucial characteristic of kernels. 

The value of the kernel is just a dot product of this vector 

representation of the two graphs, with the feature 

representations of G and G’ being vectors. And what's 

sometimes good about kernels is that we can compute the 

kernel's value without even having to explicitly generate this 

feature representation. Once the kernel has been established, 

predictions can then be made using pre-built machine learning 

models such kernel support vector machines. 

Once the kernel has been established, predictions can then 

be made using pre-built machine learning models such kernel 

support vector machines. In this paper, we'll talk about several 

graph kernels that let's quantify how similar two graphs are to 

one another. We'll talk in particular about the graphlet kernel 

and the Weisfeiler-Lehman kernel [14]. Other kernels are also 

suggested in the literature, for example the random-walk 

kernel and the shortest-path kernel, and numerous others. 

Additionally, these kernels often offer very competitive 

performance in tasks at the graph level.  

This paper consists of five sections. In Section II we 

introduce graph kernels and graphlet kernels. In Section III we 

discuss the Weisfeiler-Lehman graph kernel, while some use 

cases of this graph kernel is given in Section IV. Finally, the 

conclusion in given in Section V. 

II. GRAPH KERNELS 

What are the kernels' central concept? The main objective 

of kernels is to specify the feature vector of a given graph G. 

The concept is that we should consider this feature vector to 

be a form of bag-of-words representation of a graph. What 

then is a bag of words? When we have text documents, one 

method to represent them is to just think of them as a 

collection of words. Basically, we would say, we keep track of 

the frequency of each term throughout the document. 

We can consider of words as being arranged alphabetically, 



International Journal of Multidisciplinary Research and Publications 
 ISSN (Online): 2581-6187 

 

 

116 

 
Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of 

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023. 

and at position i of this representation of a bag of words [18], 

we will get the frequency, or the number of times the word, i 

appears in the document. In our situation, this holds true, and a 

simplistic application of this concept to graphs would be to 

treat the nodes as words. We would obtain the same feature 

vector or representation for two very distinct graphs, which is 

a concern because graphs might have very diverse structures 

but the same number of nodes. Since this network has four 

nodes (see Figure 2) and this graph also has four nodes (see 

Figure 3), their representations would be the same if we were 

to think of nodes as words. 
 

 
Fig. 2. Graph with 4 nodes. 

 
Fig. 3. Graph with 4 nodes, but different from Figure 2. 

 

As a result, we require a different candidate for the word in 

this particular bag-of-words form. We could have something 

we could refer to as a degree kernel that would allow us to 

say, "how are we going to describe a graph," for instance, to 

be a little more expressive. It will be represented as a bag of 

node degrees. From Figure A, "We have one node of degree 1, 

three nodes of degree 2, and 0 nodes of degree 3," is what we 

say [1, 3, 0]. In a similar vein from Figure B, we may inquire 

as to the number of nodes that we have that are of various 

degrees. 0 nodes of degree 1, 2 nodes of degree 2, and 2 nodes 

of degree 3 are present, [0, 2, 2]. As a result we would now be 

able to distinguish between these various graphs by obtaining 

various feature representations for each of them. 

Now, the graphlets kernel and the Weisfeiler-Lehman 

kernel both make use of the concept of a "bag-of-*" 

representation of a graph, where the star is more complex than 

node degree. Let's start by discussing the graphlets kernel. The 

rationale behind this is that by writing 1, we represented the 

graph as a count of the various graphlets it included. We want 

to emphasise an essential point: A graphlet's definition for a 

graphlet kernel differs slightly from that of a graphlet's 

definition for node-level characteristics. Furthermore, 

graphlets in the node-level characteristics do not need to be 

connected and are not rooted, which are two significant 

differences. 

Therefore, graphlets in the kernel for graphlets are not 

rooted and are not required to be connected [8]. For instance, 

if you have a list of graphlets in which we are interested from 

1 to n. Let's assume these graphlets are k-dimensional, then 

let's say k = 3, then there are four different graphlets. On three 

nodes, there are four distinct graphs, each with two directed, 

fully connected edges, one edge, and no edges. This is how 

graphlets are defined in the graph kernel. For instance, there 

exist 11 distinct graphlets for k = 4, ranging from a fully 

linked graph to a graph with only four nodes and no 

connections. Thus, given a graph, we can just count the 

number of distinct graphlets that appear in the graph to 

describe it. 

For instance, we define the graphlet count vector f [24], 

given a graph and the graphlet list, as the straightforward 

number of instances of a given graphlet that appear in our 

graph of interest. For example, if the graph G is the one we are 

interested in, then no triplets of unconnected nodes exist in 

this graph, nor do there exist any isolated nodes on any of the 

six edges that make up the graph. There are also one triangle, 

three different parts of land 2, and no isolated nodes on any of 

the six edges that make up the graph, see Figure 4. 
 

 
Fig. 4. For k =3 there are 4 graphlets. 

 

The graphlet feature vector in this instance, then, would be 

as follows: 1, 3, 6, and 0 would be available. 

Now that we have two graphs, we can define the graphlet 

kernel as the dot product of the graphlet count vectors of the 

first and second graphs. Although this is an excellent idea, 

there is a small issue. The issue is that graphlets in distinct 

graphs may have extremely varied row counts due to the 

possibility that graphs G1 and G2 have different sizes. 

Therefore, normalising this feature vector representation for 

the graph is a popular solution. 

This implies that the graphlet vector representation for a 

given graph is just the canonical division of the total number 

of graphlets contained in the graph by the count of individual 

graphlets. 

The graphlet kernel is defined as the dot product between 

these feature vector representations of graphs, which basically 

normalise for the size and density of the underlying graph. 

These feature vector representations of graphs capture the 

frequency or the proportion our given graphlet, in a graph. The 

graphlet graph kernel has a significant restriction. And another 

drawback is the high cost of counting graphlets. It takes time 

or n raised to the power k to enumerate all of the k-size 

graphlets in a graph with n nodes. As a result, counting 

graphlets of size k is exponential in terms of graphlet size but 

polynomial in terms of the number of nodes in the graph. 

And in the worst-case scenario, this is unavoidable due to 

the fact that determining if a sub-graph is isomorphic to 

another graph is NP-hard [1]. There are also quicker 

algorithms. There is a much faster approach to count the 

graphlets of size k if the graphs node degree is constrained by 
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d. However, the problem still exists that it takes a lot of time 

and money to count these discrete objects in a graph. 

Therefore, we are only able to count graphlets with a small 

number of nodes. The exponential complexity then takes 

control, and we are unable to count graphlets that are greater 

than that. 

III. WEISFEILER-LEHMAN GRAPH KERNEL 

The question is, how can we create a graph kernel that is 

more effective? And the Weisfeiler-Lehman graph kernel 

succeeds in accomplishing this. The concept is to use a 

neighbourhood structure to repeatedly enhance the vocabulary 

of nodes, hence the objective is to build an effective graph 

feature descriptor of G. And since node degrees are one hot-

one-hop neighbourhood information to multi-hop 

neighbourhood information, we generalise a version of node 

degrees. The Weisfeiler-Lehman graph isomorphism test [4], 

commonly known as colour refinement, is the algorithm that 

does this. 

The concept is that we will assign an initial colour so that 

this is an initial colour to each node, to a graph G that has a set 

of nodes V. Then, in order to create new colours, we will 

iteratively aggregate or hash colours from our neighbours. The 

new colour for a given node v will therefore be composed of 

its own colour’s hashed value from the previous time step plus 

a concatenation of colours from the node v's interesting 

neighbours, where hash is essentially a hash function that 

converts distinct inputs into different colours. And after k 

iterations of this colour refining, v summarises the graph's 

structure at the level of K-hop neighbourhood. 

Let’s explain and give you an example. In this case, I have 

two graphs that are quite similar structurally but differ only 

somewhat. This edge and this edge, respectively, are different. 

The diagonal edge and the triangle closing edge are both 

different. Therefore, we will start by giving nodes their basic 

colours. As a result, each node receives a colour of 1, which is 

the same for all nodes, see Figure 5. 

 

 
Fig. 5. Initial assignment of colors: Color refinement of 2 graphs. 

 

Now we are going to aggregate neighbouring colours, see 

Figure 6. 
 

 
Fig. 6. Aggregate neighboring colors: Color refinement of 2 graphs. 

 

In contrast to this specific node up to the top left of Figure 6, 

which collects colours from its neighbours, one and one and 

this particular node aggregates colours from its neighbours, 1, 

1, 1, and adds it to it- to itself. The exact same procedure also 

applies to the second graph. After collecting the colours, we 

should go ahead and hash them. Therefore, we use a hash 

function, which creates new colours by combining the colours 

of a node's neighbours and its own colour. Let's assume that 

the hash function here produces the following results for the 

first combination: 1, 2, 3, 4, and 5, respectively. So, based on 

these more revised colours, are we now colouring the graphs? 
 

 
Fig. 7. Aggregate Colors: Color refinement of 2 graphs. 

 

Based on the hash values [23] of the aggregated colours 

from the first step, this is the colouring of the first graph (see 

Figure 7, left graph), and this is the colouring of the second 

graph (see Figure 7, right graph). We now take these two 

graphs and use the same colour aggregating method once 

more. As an illustration, this node, which has the colour 4, 

aggregates the colours of its neighbours, including the 3, 4, 

and 5, see Figure 8. As a result, we have 3, 4, and 5 here, 

whereas, for instance, this node here with the colour 2 

aggregates from its neighbour, who is coloured 5, so it 

receives 2, 5. The same thing occurs for this graph as well. 

 

 
Fig. 8. Aggregated hash colors: Color refinement of 2 graphs. 

 

Now, once more, we take these aggregated colours and hash 

them. And let's imagine that the new colours that our hash 

function assigns to these previously aggregated colours from 

past timesteps are different from one another. The colours on 

this original, aggregated coloured graph can now be renamed 

based on the hash value, see Figures 9 and 10. And if we 

continued iterating, we would continue to polish the colours of 

the graph and arrive at more and more refined results. 

 
Fig. 9. Aggregated hash colors: Color refinement of 2 graphs. 
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Fig. 10. Aggregated hash values. 

 

The Weisfeiler-Lehman kernel, then, counts the number of 

nodes with a certain colour after we have ran this colour 

refining for a specified number of steps, let's say k iterations. 

We run this three times in our scenario, giving us 13 different 

colours, see Figures 11, 12, 13 and 14. And so, the number of 

nodes with a specific colour serves as the feature description 

for a given graph. In the initial iteration, each of the six nodes 

had the same colour, which was applied uniformly throughout. 

So, there are six occurrences of colour 1 in total. 
 

 
Fig. 11. Graph coloring, example 1. 

 

 
Fig. 12. Graph coloring counts based on graph in Figure 11. 

 
Fig. 13. Graph coloring, example 2. 

 
Fig. 14. Graph coloring counts based on graph in Figure 13. 

 

Then, once we iterated, aggregated, and refined the colours, 

there were two nodes for colour 2, one for colour 3, two for 

colour 4, and so forth. Following is an explanation of the 

characteristic in terms of colour counts for the first graph's 

various colours and the second graph's various colours. The 

Weisfeiler-Lehman graph kernel would then take the dot 

product between these two feature descriptors and return a 

value now that we know the feature descriptions. For instance, 

in our situation, the dot product of the feature descriptors is 

the Weisfeiler-Lehman kernel similarity between the two 

graphs. 

When we compute the dot product of these two feature 

descriptors, we obtain a result of 49. Since the time 

complexity of this colour refining at each step is linear in the 

size of the graph, the WL kernel is both widely used and very 

powerful, giving strong performance. It is also 

computationally efficient. It has a linear number of edges 

since each node just has to collect colours from nearby nodes 

in order to produce new colours. This is done by applying a 

basic hash function to each collection of colours to create new 

colours. 

Many hues that appeared in two graphs, need to be tracked 

when calculating the kernel value. Therefore, the maximum 

number of colours in the network will be equal to the number 

of nodes. Therefore, this time it won't be too big. Additionally, 

since it only involves a sweep over the nodes, counting the 

colours again takes linear time. Therefore, the complexity of 

computing the Weisfeiler-Lehman graph kernel between two 

graphs is just linear in their combined number of edges. This 

indicates that it is really quick and that it actually functions 

quite well in practice. 

In order to summarise the graph level properties that we 

have explored, let's start with the idea of graph kernels. A 

graph kernel can be thought of as a bag of graphlets or a bag 

of colours. When we represent the graph as as a bag of 

graphlets, this is a very expensive representation because 

counting the graphlets takes exponentially more time as the 

size of the graph increases.  

The Weisfeiler-Lehman kernel is based on this case-step 

colour refining process, which enriches and generates new 

node colours from the colours of the node's close neighbours. 

And as more iterations of this colour refinement are carried 

out, the node begins to collect colour data from remoter 

regions of the network. So, in this case, the graph is 

represented by a palette. This is effective in terms of 

computation. In addition to being closely related to graph 

neural networks, which we will cover later in this course, the 

time is linear in the size of the graph. Weisfeiler-Lehman is 

therefore a really good technique to gauge similarity between 

graphs, and in many instances, it is quite difficult to surpass.  

IV. WEISFEILER-LEHMAN GRAPH KERNEL APPLICATIONS 

AND USE CASES 

We now discuss some recent applications and use cases for 

the Weisfeiler-Lehman kernel. Weisfeiler-Lehman graph 

kernels are still among the most popular graph kernels after 

more than ten years because of their exceptional predictability 

and temporal complexity. Researchers in [16] offer a 

modification of Weisfeiler-Lehman graph kernels that, in 

contrast to equality, considers a more subtle and natural 
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degree of similarity across Weisfeiler-Lehman labels in order 

to get over this constraint. They demonstrate how the 

Wasserstein distance between certain vectors encoding 

Weisfeiler-Lehman labels can be used to determine the 

proposed similarity in an efficient manner. This and other 

facts lead to the obvious choice of using the Wasserstein k-

means method to divide the vertices. They empirically show 

that our generalisation significantly outperforms this and other 

state-of-the-art graph kernels in terms of predictive 

performance on datasets that contain structurally more 

complex graphs beyond the typically considered molecular 

graphs, including the Weisfeiler-Lehman subtree kernel, one 

of the most well-known Weisfeiler-Lehman graph kernels. 

The decoupling of kernel building and learning is one of a 

general kernel's key disadvantages. Common kernels for 

molecular graphs, like the WL subtree, which are based on the 

substructures of the molecules, treat all possible substructures 

as having the same relevance, which may not be practical in 

real-world applications. Researchers in [13] suggest a method 

in this research to learn the weights of subtree patterns within 

the framework of WWL kernels [21], the cutting-edge 

approach for a graph classification challenge. They provide an 

effective learning algorithm and derive a generalisation gap 

bound to illustrate its convergence in order to solve the 

computational problem on big scale data sets. They also show 

the efficiency of their suggested strategy for figuring out the 

weights of subtree patterns through trials on artificial and 

actual data sets. 

The majority of widely used graph kernels define graph 

similarity in terms of shared substructures and are based on 

the idea of Haussler's R-convolution kernel [9]. In their study 

[17], researchers investigate graph filtrations to enrich these 

similarity measures: They can think about a graph at various 

granularities by using meaningful orders on the set of edges, 

which enable them to build a series of nested graphs. Tracking 

graph features during the duration of such graph resolutions is 

a crucial idea in their methodology. This makes it possible to 

compare features according to when and how long they appear 

in sequences, rather than just comparing their frequencies in 

graphs. The researchers suggest a family of graph kernels that 

take these feature existence intervals into account. Although 

any graph characteristic can be used with their method to 

produce efficient kernels, they focus especially on Weisfeiler-

Lehman vertex labels. They demonstrate that, in terms of 

determining graph isomorphism, applying Weisfeiler-Lehman 

labels over specific filtrations strictly increases expressive 

power over the standard Weisfeiler-Lehman technique. Due to 

their near resemblance to the Weisfeiler-Lehman approach, 

this result actually directly produces more potent graph 

kernels based on such features and has implications for graph 

neural networks. In terms of predictive performance on several 

real-world benchmark datasets, they empirically validate the 

expressive capability of their graph kernels and demonstrate 

notable gains over state-of-the-art graph kernels. 

The following [19] distinguishes a recent Wasserstein 

Weisfeiler-Lehman (WWL) Graph Kernel: displaying the 

distribution of a graph's Weisfeiler-Lehman (WL) embedded 

node vectors in a histogram that permits the calculation of the 

Wasserstein distance between two graphs. It has been 

demonstrated to generate classification results with higher 

accuracy than other graph kernels that do not use the 

Wasserstein distance and such distribution. The Isolation 

Graph Kernel (IGK), a substitute that assesses the similarity of 

two attributed graphs, is introduced in this study [22]. In two 

ways, IGK stands out from other graph kernels. First of all, it 

is the first graph kernel to use a distributional kernel within the 

kernel mean embedding architecture. By doing this, the 

computationally expensive Wasserstein distance is avoided. 

Second, it is the first graph kernel to take into account the 

distribution of attributed nodes in a collection of graphs while 

disregarding the edges. [22] demonstrate how important it is to 

extract this distributional data from an isolation kernel feature 

map in order to create a productive and successful graph 

kernel. They demonstrate that when utilised in the context of 

SVM classification, IGK performs orders of magnitude better 

than WWL in terms of classification accuracy and runs orders 

of magnitude faster in big datasets. 

Methods for detecting DDoS attacks [3] are crucial for 

maintaining computer network security. The current flow-

based DDoS attack detection techniques, however, have a 

non-negligible time delay and are not universal for different 

DDoS attack types occurring at different rates. A quick all-

packets-based DDoS attack detection method (FAPDD) is 

suggested to close this research gap [10]. As opposed to flow-

based detections, the FAPDD first creates a new time series 

network graph model to more efficiently simplify the 

processing of network traffic management. Additionally, the 

directed Weisfeiler-Lehman graph kernel is being developed 

for the first time in order to assess the divergence between the 

current network graph and the normalised network graphs. 

Different types and rates of DDoS attacks can be specifically 

detected thanks to the new graph model and kernel measuring 

approach to assess network changes. The dynamic threshold 

and freezing method are designed to display changes in 

regular traffic and stop attack traffic from contaminating the 

network. To assess the usefulness of the suggested method, the 

overall time efficiency, and the effectiveness of the detection, 

many genuine DDoS attack datasets are used. The FAPDD 

can more effectively meet real-time needs and provide good 

detection results in various DDoS attack types with various 

attack rates when compared to other approaches. 

The development of kernels for structured data, such as 

graphs, is an important area of research since the effectiveness 

of kernel algorithms depends on the kernel it utilises. The 

optimal assignment kernel framework, which is a lesser-

known graph framework than its counterpart, the R-

convolution kernels, was used to create two graph kernels. The 

proposed kernels are known as "optimal node assignment 

kernels" [2] because in their work, the bijection associated 

with the optimal assignment framework is established between 

sets that comprise of the graph's nodes (ONA). On the basis of 

the labels produced by the Weisfeiler-Lehman (WL) test for 

graph isomorphism, the nodes of the provided data are 

categorised into neighbourhood sets in ONA, and a matrix 

representation is defined for them. The neighbourhood set 

domain is then described by a kernel in terms of such 
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matrices, and an ONA kernel is defined using an aggregate 

measure of those kernel values. The proposed kernels' 

viability is mathematically demonstrated [15]. Also covered is 

the kernel calculation using the hierarchical framework linked 

to the optimal assignment framework. Graph classification 

datasets [6] were used to analyse the performance of the 

suggested ONA kernels, and it was discovered that they 

performed better than other cutting-edge graph kernels. 

V. CONCLUSION  

In this paper we talk about graph-level characteristics and 

graph kernels, which will enable us to forecast the behaviour 

of entire graphs. Therefore, the objective is to have a single 

feature that describes the overall graph's structure. We 

discussed graph kernels, specifically the graphlet kernel and 

the WL, which stands for the Weisfeiler-Lehman graph kernel. 

Its runtime scales only linearly in the number of edges of the 

graphs and the length of the Weisfeiler-Lehman graph 

sequence. 
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