
International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

115

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

Machine Learning Methods with Graph-Level

Features and Application Use Cases

Koffka Khan

 Department of Computing and Information Technology, Faculty of Science and Agriculture, The University of the West Indies,

St. Augustine Campus, TRINIDAD AND TOBAGO

Email address: koffka.khan@gmail.com

Abstract— In this paper we talk about graph-level characteristics

and graph kernels, which will enable us to forecast the behaviour of

entire graphs. Therefore, the objective is to have a single feature that

describes the overall graph's structure. We discussed graph kernels,

specifically the graphlet kernel and the WL, which stands for the

Weisfeiler-Lehman graph kernel. Its runtime scales only linearly in

the number of edges of the graphs and the length of the Weisfeiler-

Lehman graph sequence. Finally, we give some WL use cases from

the literature.

Keywords— Graph: kernel: feature: graphlets: Weisfeiler-Lehman:

runtime: sequence.

I. INTRODUCTION

There are properties at the node and edge levels that can be

used to forecast a graph [20]. However, in this paper will now

talk about graph-level characteristics and graph kernels [11],

which will enable us to forecast the behaviour of entire graphs

[5]. Therefore, the objective is to have a single feature that

describes the overall graph's structure. For instance, if you

have a graph like the one in Figure 1, you may think about

how you would describe its structure in words.

Fig. 1. Connected graph with eight nodes (A to F).

It appears to have two loosely connected portions, a lot of

edges connecting the nodes in each part, and just one edge

between nodes D and E connecting the two sections.

How do we develop the feature descriptor that will enable

us to describe the structure, then? And to accomplish this,

we'll employ kernel-level techniques. Additionally, traditional

machine learning in graph-level prediction uses kernel

approaches extensively. Instead of creating a feature vector,

the goal is to create a kernel. Let's briefly introduce and

explain what a kernel is. Therefore, a kernel between graphs G

and G' returns a real number and assesses the similarity

between these two graphs or, more generally, the similarity

between other data points.

Thus, a kernel matrix [12] is a matrix that merely calculates

the degree of similarity between all sets of data points or

graphs. Additionally, the kernel matrix must be positive semi-

definite for a kernel to be considered genuine. That is to say, it

must have positive eigenvalues [7], for instance, and as a

result, it must be a symmetric matrix. The existence of a

feature representation, such that the kernel between two

graphs is just a feature representation of the first graph dot

product with the feature representation of the second graph, is

another crucial characteristic of kernels.

The value of the kernel is just a dot product of this vector

representation of the two graphs, with the feature

representations of G and G’ being vectors. And what's

sometimes good about kernels is that we can compute the

kernel's value without even having to explicitly generate this

feature representation. Once the kernel has been established,

predictions can then be made using pre-built machine learning

models such kernel support vector machines.

Once the kernel has been established, predictions can then

be made using pre-built machine learning models such kernel

support vector machines. In this paper, we'll talk about several

graph kernels that let's quantify how similar two graphs are to

one another. We'll talk in particular about the graphlet kernel

and the Weisfeiler-Lehman kernel [14]. Other kernels are also

suggested in the literature, for example the random-walk

kernel and the shortest-path kernel, and numerous others.

Additionally, these kernels often offer very competitive

performance in tasks at the graph level.

This paper consists of five sections. In Section II we

introduce graph kernels and graphlet kernels. In Section III we

discuss the Weisfeiler-Lehman graph kernel, while some use

cases of this graph kernel is given in Section IV. Finally, the

conclusion in given in Section V.

II. GRAPH KERNELS

What are the kernels' central concept? The main objective

of kernels is to specify the feature vector of a given graph G.

The concept is that we should consider this feature vector to

be a form of bag-of-words representation of a graph. What

then is a bag of words? When we have text documents, one

method to represent them is to just think of them as a

collection of words. Basically, we would say, we keep track of

the frequency of each term throughout the document.

We can consider of words as being arranged alphabetically,

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

116

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

and at position i of this representation of a bag of words [18],

we will get the frequency, or the number of times the word, i

appears in the document. In our situation, this holds true, and a

simplistic application of this concept to graphs would be to

treat the nodes as words. We would obtain the same feature

vector or representation for two very distinct graphs, which is

a concern because graphs might have very diverse structures

but the same number of nodes. Since this network has four

nodes (see Figure 2) and this graph also has four nodes (see

Figure 3), their representations would be the same if we were

to think of nodes as words.

Fig. 2. Graph with 4 nodes.

Fig. 3. Graph with 4 nodes, but different from Figure 2.

As a result, we require a different candidate for the word in

this particular bag-of-words form. We could have something

we could refer to as a degree kernel that would allow us to

say, "how are we going to describe a graph," for instance, to

be a little more expressive. It will be represented as a bag of

node degrees. From Figure A, "We have one node of degree 1,

three nodes of degree 2, and 0 nodes of degree 3," is what we

say [1, 3, 0]. In a similar vein from Figure B, we may inquire

as to the number of nodes that we have that are of various

degrees. 0 nodes of degree 1, 2 nodes of degree 2, and 2 nodes

of degree 3 are present, [0, 2, 2]. As a result we would now be

able to distinguish between these various graphs by obtaining

various feature representations for each of them.

Now, the graphlets kernel and the Weisfeiler-Lehman

kernel both make use of the concept of a "bag-of-*"

representation of a graph, where the star is more complex than

node degree. Let's start by discussing the graphlets kernel. The

rationale behind this is that by writing 1, we represented the

graph as a count of the various graphlets it included. We want

to emphasise an essential point: A graphlet's definition for a

graphlet kernel differs slightly from that of a graphlet's

definition for node-level characteristics. Furthermore,

graphlets in the node-level characteristics do not need to be

connected and are not rooted, which are two significant

differences.

Therefore, graphlets in the kernel for graphlets are not

rooted and are not required to be connected [8]. For instance,

if you have a list of graphlets in which we are interested from

1 to n. Let's assume these graphlets are k-dimensional, then

let's say k = 3, then there are four different graphlets. On three

nodes, there are four distinct graphs, each with two directed,

fully connected edges, one edge, and no edges. This is how

graphlets are defined in the graph kernel. For instance, there

exist 11 distinct graphlets for k = 4, ranging from a fully

linked graph to a graph with only four nodes and no

connections. Thus, given a graph, we can just count the

number of distinct graphlets that appear in the graph to

describe it.

For instance, we define the graphlet count vector f [24],

given a graph and the graphlet list, as the straightforward

number of instances of a given graphlet that appear in our

graph of interest. For example, if the graph G is the one we are

interested in, then no triplets of unconnected nodes exist in

this graph, nor do there exist any isolated nodes on any of the

six edges that make up the graph. There are also one triangle,

three different parts of land 2, and no isolated nodes on any of

the six edges that make up the graph, see Figure 4.

Fig. 4. For k =3 there are 4 graphlets.

The graphlet feature vector in this instance, then, would be

as follows: 1, 3, 6, and 0 would be available.

Now that we have two graphs, we can define the graphlet

kernel as the dot product of the graphlet count vectors of the

first and second graphs. Although this is an excellent idea,

there is a small issue. The issue is that graphlets in distinct

graphs may have extremely varied row counts due to the

possibility that graphs G1 and G2 have different sizes.

Therefore, normalising this feature vector representation for

the graph is a popular solution.

This implies that the graphlet vector representation for a

given graph is just the canonical division of the total number

of graphlets contained in the graph by the count of individual

graphlets.

The graphlet kernel is defined as the dot product between

these feature vector representations of graphs, which basically

normalise for the size and density of the underlying graph.

These feature vector representations of graphs capture the

frequency or the proportion our given graphlet, in a graph. The

graphlet graph kernel has a significant restriction. And another

drawback is the high cost of counting graphlets. It takes time

or n raised to the power k to enumerate all of the k-size

graphlets in a graph with n nodes. As a result, counting

graphlets of size k is exponential in terms of graphlet size but

polynomial in terms of the number of nodes in the graph.

And in the worst-case scenario, this is unavoidable due to

the fact that determining if a sub-graph is isomorphic to

another graph is NP-hard [1]. There are also quicker

algorithms. There is a much faster approach to count the

graphlets of size k if the graphs node degree is constrained by

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

117

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

d. However, the problem still exists that it takes a lot of time

and money to count these discrete objects in a graph.

Therefore, we are only able to count graphlets with a small

number of nodes. The exponential complexity then takes

control, and we are unable to count graphlets that are greater

than that.

III. WEISFEILER-LEHMAN GRAPH KERNEL

The question is, how can we create a graph kernel that is

more effective? And the Weisfeiler-Lehman graph kernel

succeeds in accomplishing this. The concept is to use a

neighbourhood structure to repeatedly enhance the vocabulary

of nodes, hence the objective is to build an effective graph

feature descriptor of G. And since node degrees are one hot-

one-hop neighbourhood information to multi-hop

neighbourhood information, we generalise a version of node

degrees. The Weisfeiler-Lehman graph isomorphism test [4],

commonly known as colour refinement, is the algorithm that

does this.

The concept is that we will assign an initial colour so that

this is an initial colour to each node, to a graph G that has a set

of nodes V. Then, in order to create new colours, we will

iteratively aggregate or hash colours from our neighbours. The

new colour for a given node v will therefore be composed of

its own colour’s hashed value from the previous time step plus

a concatenation of colours from the node v's interesting

neighbours, where hash is essentially a hash function that

converts distinct inputs into different colours. And after k

iterations of this colour refining, v summarises the graph's

structure at the level of K-hop neighbourhood.

Let’s explain and give you an example. In this case, I have

two graphs that are quite similar structurally but differ only

somewhat. This edge and this edge, respectively, are different.

The diagonal edge and the triangle closing edge are both

different. Therefore, we will start by giving nodes their basic

colours. As a result, each node receives a colour of 1, which is

the same for all nodes, see Figure 5.

Fig. 5. Initial assignment of colors: Color refinement of 2 graphs.

Now we are going to aggregate neighbouring colours, see

Figure 6.

Fig. 6. Aggregate neighboring colors: Color refinement of 2 graphs.

In contrast to this specific node up to the top left of Figure 6,

which collects colours from its neighbours, one and one and

this particular node aggregates colours from its neighbours, 1,

1, 1, and adds it to it- to itself. The exact same procedure also

applies to the second graph. After collecting the colours, we

should go ahead and hash them. Therefore, we use a hash

function, which creates new colours by combining the colours

of a node's neighbours and its own colour. Let's assume that

the hash function here produces the following results for the

first combination: 1, 2, 3, 4, and 5, respectively. So, based on

these more revised colours, are we now colouring the graphs?

Fig. 7. Aggregate Colors: Color refinement of 2 graphs.

Based on the hash values [23] of the aggregated colours

from the first step, this is the colouring of the first graph (see

Figure 7, left graph), and this is the colouring of the second

graph (see Figure 7, right graph). We now take these two

graphs and use the same colour aggregating method once

more. As an illustration, this node, which has the colour 4,

aggregates the colours of its neighbours, including the 3, 4,

and 5, see Figure 8. As a result, we have 3, 4, and 5 here,

whereas, for instance, this node here with the colour 2

aggregates from its neighbour, who is coloured 5, so it

receives 2, 5. The same thing occurs for this graph as well.

Fig. 8. Aggregated hash colors: Color refinement of 2 graphs.

Now, once more, we take these aggregated colours and hash

them. And let's imagine that the new colours that our hash

function assigns to these previously aggregated colours from

past timesteps are different from one another. The colours on

this original, aggregated coloured graph can now be renamed

based on the hash value, see Figures 9 and 10. And if we

continued iterating, we would continue to polish the colours of

the graph and arrive at more and more refined results.

Fig. 9. Aggregated hash colors: Color refinement of 2 graphs.

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

118

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

Fig. 10. Aggregated hash values.

The Weisfeiler-Lehman kernel, then, counts the number of

nodes with a certain colour after we have ran this colour

refining for a specified number of steps, let's say k iterations.

We run this three times in our scenario, giving us 13 different

colours, see Figures 11, 12, 13 and 14. And so, the number of

nodes with a specific colour serves as the feature description

for a given graph. In the initial iteration, each of the six nodes

had the same colour, which was applied uniformly throughout.

So, there are six occurrences of colour 1 in total.

Fig. 11. Graph coloring, example 1.

Fig. 12. Graph coloring counts based on graph in Figure 11.

Fig. 13. Graph coloring, example 2.

Fig. 14. Graph coloring counts based on graph in Figure 13.

Then, once we iterated, aggregated, and refined the colours,

there were two nodes for colour 2, one for colour 3, two for

colour 4, and so forth. Following is an explanation of the

characteristic in terms of colour counts for the first graph's

various colours and the second graph's various colours. The

Weisfeiler-Lehman graph kernel would then take the dot

product between these two feature descriptors and return a

value now that we know the feature descriptions. For instance,

in our situation, the dot product of the feature descriptors is

the Weisfeiler-Lehman kernel similarity between the two

graphs.

When we compute the dot product of these two feature

descriptors, we obtain a result of 49. Since the time

complexity of this colour refining at each step is linear in the

size of the graph, the WL kernel is both widely used and very

powerful, giving strong performance. It is also

computationally efficient. It has a linear number of edges

since each node just has to collect colours from nearby nodes

in order to produce new colours. This is done by applying a

basic hash function to each collection of colours to create new

colours.

Many hues that appeared in two graphs, need to be tracked

when calculating the kernel value. Therefore, the maximum

number of colours in the network will be equal to the number

of nodes. Therefore, this time it won't be too big. Additionally,

since it only involves a sweep over the nodes, counting the

colours again takes linear time. Therefore, the complexity of

computing the Weisfeiler-Lehman graph kernel between two

graphs is just linear in their combined number of edges. This

indicates that it is really quick and that it actually functions

quite well in practice.

In order to summarise the graph level properties that we

have explored, let's start with the idea of graph kernels. A

graph kernel can be thought of as a bag of graphlets or a bag

of colours. When we represent the graph as as a bag of

graphlets, this is a very expensive representation because

counting the graphlets takes exponentially more time as the

size of the graph increases.

The Weisfeiler-Lehman kernel is based on this case-step

colour refining process, which enriches and generates new

node colours from the colours of the node's close neighbours.

And as more iterations of this colour refinement are carried

out, the node begins to collect colour data from remoter

regions of the network. So, in this case, the graph is

represented by a palette. This is effective in terms of

computation. In addition to being closely related to graph

neural networks, which we will cover later in this course, the

time is linear in the size of the graph. Weisfeiler-Lehman is

therefore a really good technique to gauge similarity between

graphs, and in many instances, it is quite difficult to surpass.

IV. WEISFEILER-LEHMAN GRAPH KERNEL APPLICATIONS

AND USE CASES

We now discuss some recent applications and use cases for

the Weisfeiler-Lehman kernel. Weisfeiler-Lehman graph

kernels are still among the most popular graph kernels after

more than ten years because of their exceptional predictability

and temporal complexity. Researchers in [16] offer a

modification of Weisfeiler-Lehman graph kernels that, in

contrast to equality, considers a more subtle and natural

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

119

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

degree of similarity across Weisfeiler-Lehman labels in order

to get over this constraint. They demonstrate how the

Wasserstein distance between certain vectors encoding

Weisfeiler-Lehman labels can be used to determine the

proposed similarity in an efficient manner. This and other

facts lead to the obvious choice of using the Wasserstein k-

means method to divide the vertices. They empirically show

that our generalisation significantly outperforms this and other

state-of-the-art graph kernels in terms of predictive

performance on datasets that contain structurally more

complex graphs beyond the typically considered molecular

graphs, including the Weisfeiler-Lehman subtree kernel, one

of the most well-known Weisfeiler-Lehman graph kernels.

The decoupling of kernel building and learning is one of a

general kernel's key disadvantages. Common kernels for

molecular graphs, like the WL subtree, which are based on the

substructures of the molecules, treat all possible substructures

as having the same relevance, which may not be practical in

real-world applications. Researchers in [13] suggest a method

in this research to learn the weights of subtree patterns within

the framework of WWL kernels [21], the cutting-edge

approach for a graph classification challenge. They provide an

effective learning algorithm and derive a generalisation gap

bound to illustrate its convergence in order to solve the

computational problem on big scale data sets. They also show

the efficiency of their suggested strategy for figuring out the

weights of subtree patterns through trials on artificial and

actual data sets.

The majority of widely used graph kernels define graph

similarity in terms of shared substructures and are based on

the idea of Haussler's R-convolution kernel [9]. In their study

[17], researchers investigate graph filtrations to enrich these

similarity measures: They can think about a graph at various

granularities by using meaningful orders on the set of edges,

which enable them to build a series of nested graphs. Tracking

graph features during the duration of such graph resolutions is

a crucial idea in their methodology. This makes it possible to

compare features according to when and how long they appear

in sequences, rather than just comparing their frequencies in

graphs. The researchers suggest a family of graph kernels that

take these feature existence intervals into account. Although

any graph characteristic can be used with their method to

produce efficient kernels, they focus especially on Weisfeiler-

Lehman vertex labels. They demonstrate that, in terms of

determining graph isomorphism, applying Weisfeiler-Lehman

labels over specific filtrations strictly increases expressive

power over the standard Weisfeiler-Lehman technique. Due to

their near resemblance to the Weisfeiler-Lehman approach,

this result actually directly produces more potent graph

kernels based on such features and has implications for graph

neural networks. In terms of predictive performance on several

real-world benchmark datasets, they empirically validate the

expressive capability of their graph kernels and demonstrate

notable gains over state-of-the-art graph kernels.

The following [19] distinguishes a recent Wasserstein

Weisfeiler-Lehman (WWL) Graph Kernel: displaying the

distribution of a graph's Weisfeiler-Lehman (WL) embedded

node vectors in a histogram that permits the calculation of the

Wasserstein distance between two graphs. It has been

demonstrated to generate classification results with higher

accuracy than other graph kernels that do not use the

Wasserstein distance and such distribution. The Isolation

Graph Kernel (IGK), a substitute that assesses the similarity of

two attributed graphs, is introduced in this study [22]. In two

ways, IGK stands out from other graph kernels. First of all, it

is the first graph kernel to use a distributional kernel within the

kernel mean embedding architecture. By doing this, the

computationally expensive Wasserstein distance is avoided.

Second, it is the first graph kernel to take into account the

distribution of attributed nodes in a collection of graphs while

disregarding the edges. [22] demonstrate how important it is to

extract this distributional data from an isolation kernel feature

map in order to create a productive and successful graph

kernel. They demonstrate that when utilised in the context of

SVM classification, IGK performs orders of magnitude better

than WWL in terms of classification accuracy and runs orders

of magnitude faster in big datasets.

Methods for detecting DDoS attacks [3] are crucial for

maintaining computer network security. The current flow-

based DDoS attack detection techniques, however, have a

non-negligible time delay and are not universal for different

DDoS attack types occurring at different rates. A quick all-

packets-based DDoS attack detection method (FAPDD) is

suggested to close this research gap [10]. As opposed to flow-

based detections, the FAPDD first creates a new time series

network graph model to more efficiently simplify the

processing of network traffic management. Additionally, the

directed Weisfeiler-Lehman graph kernel is being developed

for the first time in order to assess the divergence between the

current network graph and the normalised network graphs.

Different types and rates of DDoS attacks can be specifically

detected thanks to the new graph model and kernel measuring

approach to assess network changes. The dynamic threshold

and freezing method are designed to display changes in

regular traffic and stop attack traffic from contaminating the

network. To assess the usefulness of the suggested method, the

overall time efficiency, and the effectiveness of the detection,

many genuine DDoS attack datasets are used. The FAPDD

can more effectively meet real-time needs and provide good

detection results in various DDoS attack types with various

attack rates when compared to other approaches.

The development of kernels for structured data, such as

graphs, is an important area of research since the effectiveness

of kernel algorithms depends on the kernel it utilises. The

optimal assignment kernel framework, which is a lesser-

known graph framework than its counterpart, the R-

convolution kernels, was used to create two graph kernels. The

proposed kernels are known as "optimal node assignment

kernels" [2] because in their work, the bijection associated

with the optimal assignment framework is established between

sets that comprise of the graph's nodes (ONA). On the basis of

the labels produced by the Weisfeiler-Lehman (WL) test for

graph isomorphism, the nodes of the provided data are

categorised into neighbourhood sets in ONA, and a matrix

representation is defined for them. The neighbourhood set

domain is then described by a kernel in terms of such

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

120

Koffka Khan, “Machine Learning Methods with Graph-Level Features and Application Use Cases,” International Journal of

Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 7, pp. 115-120, 2023.

matrices, and an ONA kernel is defined using an aggregate

measure of those kernel values. The proposed kernels'

viability is mathematically demonstrated [15]. Also covered is

the kernel calculation using the hierarchical framework linked

to the optimal assignment framework. Graph classification

datasets [6] were used to analyse the performance of the

suggested ONA kernels, and it was discovered that they

performed better than other cutting-edge graph kernels.

V. CONCLUSION

In this paper we talk about graph-level characteristics and

graph kernels, which will enable us to forecast the behaviour

of entire graphs. Therefore, the objective is to have a single

feature that describes the overall graph's structure. We

discussed graph kernels, specifically the graphlet kernel and

the WL, which stands for the Weisfeiler-Lehman graph kernel.

Its runtime scales only linearly in the number of edges of the

graphs and the length of the Weisfeiler-Lehman graph

sequence.

REFERENCES

[1] Bittel, Lennart, and Martin Kliesch. "Training variational quantum

algorithms is np-hard." Physical Review Letters 127.12 (2021): 120502.

[2] Doan, Khoa D., et al. "Interpretable graph similarity computation via
differentiable optimal alignment of node embeddings." Proceedings of

the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval. 2021.

[3] Eliyan, Lubna Fayez, and Roberto Di Pietro. "DoS and DDoS attacks in

Software Defined Networks: A survey of existing solutions and research

challenges." Future Generation Computer Systems 122 (2021): 149-171.
[4] Huang, Ningyuan Teresa, and Soledad Villar. "A Short Tutorial on The

Weisfeiler-Lehman Test and Its Variants." ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2021.

[5] Ju, Wei, et al. "GHNN: Graph Harmonic Neural Networks for semi-
supervised graph-level classification." Neural Networks 151 (2022): 70-

79.

[6] Le, Tuan, et al. "Parameterized hypercomplex graph neural networks for
graph classification." International Conference on Artificial Neural

Networks. Springer, Cham, 2021.

[7] Li, Shuchao, Wanting Sun, and Yuantian Yu. "Adjacency eigenvalues of
graphs without short odd cycles." Discrete Mathematics 345.1 (2022):

112633.

[8] Liang, Fangzhou, and Yueming Lu. "Rooted Subtrees Recursive Neural

Networks on Graphs." 2021 IEEE Sixth International Conference on

Data Science in Cyberspace (DSC). IEEE, 2021.

[9] Liu, Kai, Lulu Wang, and Yi Zhang. "An Aligned Subgraph Kernel
Based on Discrete-Time Quantum Walk." Asian Conference on Machine

Learning. PMLR, 2021.

[10] Liu, Xinqian, et al. "A fast all-packets-based DDoS attack detection
approach based on network graph and graph kernel." Journal of Network

and Computer Applications 185 (2021): 103079.

[11] Long, Qingqing, et al. "Theoretically improving graph neural networks
via anonymous walk graph kernels." Proceedings of the Web

Conference 2021. 2021.
[12] Mei, Song, Theodor Misiakiewicz, and Andrea Montanari.

"Generalization error of random feature and kernel methods:

hypercontractivity and kernel matrix concentration." Applied and
Computational Harmonic Analysis 59 (2022): 3-84.

[13] Nguyen, Dai Hai, Canh Hao Nguyen, and Hiroshi Mamitsuka. "Learning

subtree pattern importance for Weisfeiler-Lehman based graph kernels."

Machine Learning 110.7 (2021): 1585-1607.

[14] Park, Sun Woo, et al. "The PWLR graph representation: A Persistent

Weisfeiler-Lehman scheme with Random Walks for graph
classification." Topological, Algebraic and Geometric Learning

Workshops 2022. PMLR, 2022.

[15] Salim, Asif, S. S. Shiju, and S. Sumitra. "Graph kernels based on
optimal node assignment." Knowledge-Based Systems 244 (2022):

108519.

[16] Schulz, Till Hendrik, et al. "A generalized weisfeiler-lehman graph
kernel." Machine Learning (2022): 1-29.

[17] Schulz, Till, Pascal Welke, and Stefan Wrobel. "Graph filtration

kernels." Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 36. No. 8. 2022.

[18] Sonawane, Sheetal S., Parikshit N. Mahalle, and Archana S. Ghotkar.

"Text Analytics Using Graph Theory." Information Retrieval and
Natural Language Processing. Springer, Singapore, 2022. 117-134.

[19] Togninalli, Matteo, et al. "Wasserstein weisfeiler-lehman graph kernels."

Advances in Neural Information Processing Systems 32 (2019).
[20] Weis, James W., and Joseph M. Jacobson. "Learning on knowledge

graph dynamics provides an early warning of impactful research."

Nature Biotechnology 39.10 (2021): 1300-1307.
[21] Wijesinghe, Asiri, Qing Wang, and Stephen Gould. "A Regularized

Wasserstein Framework for Graph Kernels." 2021 IEEE International

Conference on Data Mining (ICDM). IEEE, 2021.
[22] Xu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation graph kernel."

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35.

No. 12. 2021.
[23] Xu, Zhi, et al. "Structure-Preserving Hashing for Tree-Structured Data."

Signal, Image and Video Processing (2022): 1-9.

[24] Zhou, Jingbo, et al. "Competitive Relationship Prediction for Points of
Interest: A Neural Graphlet Based Approach." IEEE Transactions on

Knowledge and Data Engineering (2021).

