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Abstract— This study aimed to identify the best model of parametric 

survival models based on the variables that have a significant effect on 

neonatal mortality in Sudan. Data were collected from Omdurman 

Maternity Hospital, from the record of pregnant women from the first 

follow-up until the delivery and whether the neonate was alive or dead. 

The data focused on demographic variables (mother's age, number of 

previous delivery, region, number of neonate and the sex of neonate) 

and health variables (neonate weight and mode of delivery). Through 

log rank test the variables (age, previous delivers and weight of 

neonate) had a significant effect and through Chi 2 test the parametric 

models (Log Logistic, Log Normal, Weibull, Exponential and 

Gompertz) are significant. According to AIC and BIC criterion the 

Weibull's is the best parametric model. 

 

Keywords— Survival Model, Neonate, Weibull, Gompertz, 

Exponential. 

I. INTRODUCTION  

Due to the importance of the topic of survival time and its 

impact on multiple factors, the urgent need has emerged to 

develop statistical methods and means to increase accuracy and 

comprehensive and broad knowledge of the factors affecting 

the survival of the child alive or dead within the study period. 

Therefore, there are many survival models that deal with this 

type of studies, including parametric (Exponential Model, 

weibull Model, log-Logistic Model, logNormal Model, 

Gompertz Model) and The semi-parametric (Cox Model) These 

methods are related to the analysis of survival data, which 

varies according to the nature of the phenomenon studied, and 

given the importance of these models in practical life and the 

importance of the child and his future role in the development 

of nations, many researchers have studied them from many 

different points of view, and the interest of researchers in these 

models is still present. In this paper we want to evaluate the 

most important explanatory variables and using comparison 

criteria to determine the best parametric model or optimization 

of parametric survival models identifies the most important 

factors affecting neonatal mortality in Sudan. 

II. DATA & METHODS 

Data Collection: Data were collected from Omdurman 

Maternity Hospital in 2020, from the record of pregnant women 

from the first follow-up until the delivery and whether the 

neonate was alive or dead. The data focused on demographic 

variables: mother's age, number of previous delivery,  region, 

number of neonate (twin - single) and the sex of  neonate (twin 

- single) and health variables: neonate weight (normal (2.5 - 4) 

kg, Abnormal) and mode of delivery (normal vaginal delivery 

{NVD}, cesarean section {C/S}). 

Parametric Survival Models: Parametric survival models used 

in the study, Exponential Model,  weibull Model, log-Logistic 

Model, logNormal Model, Gompertz Model. 

Weibull and Exponential Models: Exponential and Weibull 

models, the proportional-hazards metric simply because it eases 

comparison with those results produced by stcox (). You can, 

however, specify the time option to choose the accelerated 

failure-time parameterization. The Weibull hazard and survivor 

functions are: 

h(t) = pλtp−1                       (1) 

S(t) = exp(−λ𝑡p)               (2) 

Where λ is parameterized (λ𝑗 = exp(𝑥𝑗𝛽) ) (Peto, 973). If p = 

1, these functions reduce to those of the exponential. 

Lognormal and Log-logistic Models: For the lognormal 

distribution, the natural logarithm of time follows a normal 

distribution; for the log-logistic distribution, the natural 

logarithm of time follows a logistic distribution. The lognormal 

survivor and hazard functions are: 

S(t) = 1 − Φ{
log(t)−μ

σ
}                     (3) 

ℎ(𝑡) =
1

𝜎⁄ 𝑡  𝑒𝑥𝑝[−
1

2𝜎2(log(t)−𝜇)2]

1−∅(
log(t)−𝜇

𝜎
)

       (4) 

Where Φ(z) is the standard normal cumulative distribution 

function. 

The lognormal regression is implemented by setting 𝜇𝑗 =

𝑥𝑗β and treating the standard deviation, σ, as an ancillary 

parameter to be estimated from the data. 

The loglogistic regression is obtained if zj has a logistic density. 

The log-logistic survivor and hazard functions are: 

S(t) =   {1 + (λt)1/γ}
−1

          (5) 

ℎ(𝑡) =
𝜆γ𝑡γ−1

1+𝜆𝑡γ                           (6) 

This model is implemented by parameterizing 𝜆𝑗= 

exp(−𝑥𝑗β) and treating the scale parameter γ as an ancillary 

parameter to be estimated from the data. 

Gompertz Model: The Gompertz regression is parameterized 

only as a PH model. This model has been extensively used by 

medical researchers and biologists modeling mortality data. 

The Gompertz distribution implemented is the two-parameter 

function as described in (Lee and Wang, 2003), with the 

following hazard and survivor functions: 
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h(t) = λ exp (γt)                         (7) 

S(t) = 𝑒𝑥𝑝{−λγ−1(𝑒γt − 1)}       (8) 

The model is implemented by parameterizing λ𝑗 = 𝑒𝑥𝑝(𝑥𝑗𝛽), 

where γ is an ancillary parameter to be estimated from the data. 

Criteria of evaluation: 

I. Akaike Information Criterion (AIC): Standard AIC was 

proposed by (AKAIKE -1974) to measure the quality and 

accuracy of the statistical model, and it is given by the following 

formula: 

AIC= -2logL+2k                      (9) 

number of parameters ≡ 𝑘 

Likelihood ≡ 𝐿 

II. Bayesian Information Criterion (BIC): Standard BIC was 

proposed by (Scnwarz's, 1978) to measure the quality and 

accuracy of the statistical model estimation, taking into 

account the sample size: 

BIC=-2logL+klogN        (10) 

III. RESULTS 

Test the significant factors: 

 
 

TABLE 1: Estimating parameters of parametric survival models: 

                           Factors  

Model 
Age 

Previous 

delivers 
Sex neonate Number of neonate City 

Weight 

neonate 

Mode of 

delivery 

Exponential 

parameter 0.692 0.154 0.778 1.106 1.026 2.84 0.63 

Wald test 2.03 2.99 1.25 0.01 0.99 3.93 0.73 

P-value 0.01 0.00 0.21 0.99 0.32 0.00 0.47 

Weibull 

parameter 0.849 0.404 0.820 1.778 3.40 4.474 0.033 

Wald test 1.08 2.23 1.26 0.01 0.24 4.81 0.04 

P-value 0.04 0.01 0.21 0.99 0.15 0.00 0.97 

Logistic 
parameter 0.334 0.777 0.335 2,799 1.00 1.408 0.248 

Wald test 1.94 3.4 1.82 0.01 1.31 5.7 0.94 

P-value 0.05 0.02 0.06 0.99 0.08 0.00 0.35 

Lognormal 
parameter 0.335 0.077 0.335 2,799 1.004 1.408 0.248 

Wald test 1.94 3.31 0.34 0.01 1.82 5.7 0.94 

P-value 0.05 0.00 0.74 0.99 0.07 0.00 0.35 

Gompertz 
parameter 1.214 0.569 1.214 0.870 4.254 1.717 0.026 

Wald test 3.47 2.6 1.74 0.00 0.03 4.39 0.00 

P-value 0.00 0.01 0.08 1.00 0.98 0.00 1.00 

Source: prepared by the researchers by using STATA 17, 2022 
 

TABLE 2: Log rank test for parametric survival models 

Models Log rank test Age Previous delivers Sex neonate Number of neonate City Weight neonate Mode of delivery 

Exponential 
2Chi 12.42 12.02 0.02 3.42 0.23 18.41 0.48 

p-value 0.01 0.03 0.62 0.06 0.63 0.00 0.49 

Weibull 
2Chi 14.25 11.1 0.31 3.02 0.15 19.36 0.97 

p-value 0.01 0.03 0.58 0.08 0.70 0.00 0.32 

Log-logistic 
2Chi 21.8 21.03 0.41 14.4 0.00 22.2 1.09 

p-value 0.01 0.05 0.522 0.08 0.99 0.00 0.30 

Lognormal 
2Chi 20.34 16.96 0.43 3.16 0.03 20.33 1.1 

p-value 0.00 0.01 0.51 0.08 0.86 0.00 0.30 

Gompertz 
2Chi 10.79 18.8 0.40 2.90 0.13 18.67 1.15 

p-value 0.02 0.01 0.53 0.08 0.72 0.00 0.28 

Source: prepared by the researchers by using STATA 17, 2022 
 

 
Figure 1: The hazard function of the Exponential model 

Source: prepared by the researcher by using STATA 17, 2022 
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Figure 2: Estimated Hazard Function for Parametric Survival Models: 

Source: prepared by the researchers by using STATA 17, 2022 

 
TABLE 3: Estimation of parameters of significant variables in parametric survival models: 

 

Source: prepared by the researchers by using STATA 17, 2022 

 
TABLE 4: Criteria for choosing the best model: 

Models Log likely Chi2  P-value AIC BIC 

Exponential 20.20 19.42 0.00 42.40 42.13 

Weibull 14.49 24.00 0.00 32.98 32.45 

Logistic 15.21 22.82 0.00 34.42 33.88 

Lognormal 15.03 22.94 0.00 34.06 33.52 

Gompertz 15.30 23.30 0.00 34.60 34.06 

Source: prepared by the researchers by using STATA 17, 2022 

IV. DISCUSSION 

From table 1: We found that the factors of (previous delivers 

and weight neonate) had significant effect on neonatal mortality 

at the level of significance 5% for all study models, and the 

factor of mother’s age is significant in models of (Exponential, 

Weibull and Gompertz). But the factors of (sex neonate, 

number of neonate, city and mode of delivery) are not 

significant for all study models; this means that there had not 

effect on neonatal mortality at the level of significance 5%. 

From table 2: We found that the factors of (mother’s age 

previous delivers and weight neonate) had significant 

differences in hazard probabilities through survival time at the 

level of significance 5% for all study models except factor of 

previous delivers in Log-logistic model and the factors of (sex 

neonate, number of neonate, city and mode of delivery) had not 

significant differences in hazard probabilities through survival 

time at the level of significance 5%. 

The hazard function of the exponential model is a constant 

function with time and increased shown in figures 1 & 2. 

Table 3 shows that the estimation of the parametric survival 

models for the significant factors (age, previous delivery, 

weight neonate) and the estimation of the parameter of each 

model. 

From table 4: We found that the probabilities values of all 

parametric survival models (0.00<0.05) means that all models 

are significant and can be used in estimating the hazard of 

neonatal mortality, the Weibull model has the lowest criterion 

values of (AIC and BIC) with chi2 (24); The best parametric 

survival model for estimating the hazard of death for neonatal 

mortality is Weibull and the model given by the following 

formula (referring to Table 3): 
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Parameter Exponential Weibull Log-Logistic Lognormal Gompertz 

Age 0.227 0.37 0.09 0.11 0.42 

Parous 0.611 -1.71 0.45 0.38 1.77 

Weight neonate 2.88 3.74 1.38 1.33 3.70 

constant 5.48 7.15 2.79 2.77 6.54 

P - 2.64 - - - 

Γ - - 0.31 - 0.69 

𝜎 - - - 0.55 - 
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ℎ̂(𝑡𝑗|𝑥𝑗)

= {exp (7.15 + 0.37𝐴𝑔𝑒𝑗 − 1.71𝑝𝑎𝑟𝑜𝑢𝑠𝑗  

+ 3.74𝑤𝑒𝑖𝑔ℎ𝑡 𝑛𝑒𝑜𝑛𝑎𝑡𝑒𝑗} 2.64𝑡𝑗
1.64                        
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