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Abstract— In this paper I will discuss machine learning with graphs 

and its different use cases. Machine-learning prediction challenges at 

the node level, edge level, and graph level were discussed. The 

selection of a graph representation was then discussed in terms of 

directed and undirected graphs, bipartite graphs, weighted and 

unweighted graphs, adjacency matrices, and some definitions from 

graph theory, such as the connectivity of graphs, weak connectivity, 

and strong connectivity, as well as the concept of node degree. 
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I. INTRODUCTION  

The goal of the first section is to motivate and excite you with 

graphs, structured data and the unique machine learning 

techniques we can use on it. So why use graphs? A generic 

language for describing and analyzing entities with 

relationships and interactions is represented by graphs. This 

means that we should truly think of the world or a particular 

area in terms of networks and relations between these things 

rather than as a collection of isolated data points. This 

indicates that there is an underlying graph of relationships 

between the entities, and that these entities are related to one 

another in accordance with these connections or the graph's 

structure. 

There are many different types of data that can naturally be 

represented as graphs and modeling these graphical 

relationships and relational structure of the underlying domain 

enables us to develop models of the underlying phenomena 

that underlie the data that are considerably more truthful and 

accurate [10]. Therefore, for instance, we can consider that 

infrastructure, events, disease pathways, networks of particles 

in physics, networks of creatures in food webs, and networks 

of computer networks can all be represented as graphs. In a 

similar way, we might consider how our brain's neurons are 

connected, as well as social networks, economic networks, 

communication networks, patients between different papers, 

and the Internet as a massive communication network. 

Once more, all of these fields are by nature networks or 

graphs. In addition, that representation enables us to capture 

the connections among various things or entities in these many 

domains. Finally, facts can be represented as relationships 

between various entities using knowledge. The regulatory 

systems in our cells can be characterized as operations 

controlled by connections between various elements. 

Even real-life scenes from the outside world can be 

represented as graphs showing the relationships between the 

scene's objects [29]. They are referred to as scene graphs. 

Software can be represented as a graph of calls between 

various functions [14], for example, or as the structure of the 

code as captured by an abstract syntax tree. 

As a set of graphs, we can naturally take molecules, which 

are made up of nodes, atoms, and bonds, and represent the 

atoms as nodes and the relationships between them as edges 

[22]. Of course, we can take three-dimensional shapes and 

represent them as graphs in computer graphics [5]. Therefore, 

in all of these fields, graphical structure is crucial because it 

enables us to accurately characterize the underlying domain 

and events.  

There are two large sections of data that can be represented 

as graphs, which is how we will conceptualize graph relational 

data. First, there are what are known as natural graphs or 

networks, which naturally describe underlying domains as 

graphs. For instance, graphs naturally arise in social networks 

[34], societies, which are collections of seven billion people 

connected through connections, conversations, and 

transactions between technological devices, such as phone 

calls and financial transactions. In biomedicine, genes and 

proteins that control biological processes exist. We can use a 

graph to visualize connections between these many biological 

entities [15]. As previously stated, our brains' connections 

between neurons are essentially a network of links. Present 

these domains as networks if you want to model them. 

Another example of a domain with relational structure is 

one where we can express the relational structure using 

graphs. Information and knowledge, for instance, are 

frequently arranged and connected. A graph can be used to 

represent software. We frequently have the ability to connect 

data elements that are comparable. In addition, this will 

produce our similarity network, or graph. Moreover, in 

physics, we can use particle-based simulation to model how 

particles are related to one another through and they depict 

this with the graph. Other domains with natural relational 

structure include molecules, scene graphs [13], and 3D shapes. 

This indicates that there are numerous distinct domains, as 

well as other domains that can naturally be depicted as graphs 

to capture the relationship structure, such as, natural networks 

or graphs. We will discuss how to make use of this relational 

structure to be able to produce better, more accurate 

predictions as our main topic. In addition, it is particularly 

crucial now because couplings domains have developed a 

relational structure that can be represented by a graph. 

Furthermore, by formally modeling these interactions, we will 
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be able to improve performance, create more accurate models, 

and make predictions that are more precise. 

In addition, in the era of deep learning [23], where the 

modern toolkit for deep learning is focused on simple data 

types, this is particularly intriguing and significant. It is 

focused on simple grids and sequences. A series, like text or 

speech, has a linear structure, and wonderful tools have been 

created to evaluate this kind of structure. All images have this 

spatial locality and the ability to be resized, making it possible 

to express them as fixed size grids or standards. In addition, 

once more, deep learning techniques have proven to be quite 

effective at processing these kinds of fixed-size photos. 

However, because they are more complicated, networks, 

graphs, etc., are far more difficult to process. They are firstly 

arbitrary in size and complex in topology. Additionally, there 

is no spatial localization like in grids or text. We are familiar 

with left and right in text, up and down in grids, and left and 

right. However, there is no reference point or concept of 

spatial locality in networks. The second crucial aspect is that 

deep learning cannot be performed since there is no set node 

ordering or reference point. Additionally, these networks 

frequently contain multi-model properties and are dynamic. 

We will therefore focus on how to create neural networks 

that are much more broadly applicable [2]. How can we create 

neural networks that can process intricate data structures like 

graphs? Moreover, in reality, the newest area of study in deep 

learning and representational learning is relational data graphs. 

Accordingly, what we would like to do is develop neural 

networks, but instead of using our graph as input, we will use 

it as output so that they may make predictions. 

Moreover, these predictions can be made at the level of 

individual nodes, pairs of nodes, or linkages, or they can be 

much more sophisticated, such as a newly constructed graph 

or a prediction of a particular molecule's attribute that can be 

represented as a graph on the input. 

In addition, the question is, how do we create the neural 

network architecture that will enable us to complete this 

process from beginning to end without the need for human 

feature engineering? 

What I am trying to say is that traditional machine learning 

approaches put a lot of work into defining appropriate features 

and ways to capture the data's structure so that machine-

learning models can utilize it. Therefore, our main focus in 

this section will be on representation learning, which skips the 

feature engineering stage. In essence, we can automatically 

learn a good representation of the graph so that it can be 

utilized for downstream machine learning algorithms after we 

get our graph data. 

Automatically extracting or learning features from the graph 

is what this learning is all about. We can conceive of 

representation learning as mapping graph nodes to d-

dimensional vectors or embeddings [4] so that nodes that 

appear to be part of the network are embedded closely 

together in the embedding space. The objective is to learn a 

function f that will take the nodes and convert them into these 

d-dimensional, real valued vectors. This vector will be called a 

representation, a feature representation, an embedding of a 

particular node, an embedding of a given graph, an embedding 

of a certain link, etc. 

This paper consists of four sections. In Section II we give 

some applications in graph machine learning. In Section III we 

discuss the selection of graph representation, while the 

conclusion in given in Section VI. 

II. APPLICATIONS 

I am going to talk about graph machine learning 

applications in this section of the paper and how it affects a 

variety of applications. We can create many task kinds in 

machine learning on graphs. Tasks can be created down to the 

level of specific nodes, or at the level of edges, which are 

pairings of nodes, we can define jobs. Both jobs at the level of 

entire graphs, such as graph level prediction or graph 

generation, as well as tasks at the level of subgraphs of nodes 

can be identified or defined. 

Next, I am going to walk you through these many task 

levels and demonstrate the various domains and applications 

that this kind of modeling methodology may be used in. 

Therefore, when discussing node level jobs, we typically refer 

to node classification, where we are attempting to predict a 

node's attribute. For instance, categorize products or internet 

folks. In link prediction, we attempted to foretell the presence 

or absence of missing links between two nodes. The 

completion of knowledge graphs is one such example of this 

endeavor. In a task at the graph level called "graph 

classification," we endeavor to classify various graphs. 

For instance, we might want to visualize molecules as 

graphs and then forecast their attributes. This is a particularly 

fascinating and crucial task for drug creation since it requires 

us to predict the characteristics of various compounds and 

medications. We may also perform clustering or community 

detection, where the objective is to find neatly separated areas 

of the graph where nodes are highly or densely related to one 

another. In addition, one use for these would be social circle 

detection. There are other kinds of tasks, too. For instance, 

graph evolution or graph generation, where graph generation 

might be used, for instance, to identify new chemical 

structures for drugs [9]. 

Moreover, in physics, where we want to perform precise 

simulations of different sorts of physics phenomena, which 

can be represented as a graph. In this field, forecasting graphs 

and its evolution is quite beneficial. Therefore, in all of these 

machine-learning activities, we use graphs, which results in 

high-impact applications. I want to offer you a few examples 

of them. 

I am going to start by providing you with some examples of 

node level machine learning applications. The following issue 

is a recent one. Protein folding [28] is the process by which 

molecules known as proteins regulate various biological 

processes in our bodies. For instance, drugs work by binding 

to or altering the behavior of various proteins, which then 

alters the biological processes in our bodies and for example, 
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causes us to be cured or healed. Amino acids make up 

proteins. Our protein can also be thought of as a series of 

amino acids. However, because of magnetic and other types of 

forces, these proteins are not actually chains or strains; 

instead, they fold into a variety of intricate forms. 

Can you anticipate the 3D structure of the underlying 

protein from a sequence of amino acids? This is one of the 

most crucial biological puzzles that has not been solved. 

Therefore, the computational challenge that scientists have 

been holding competitions over since the 1970s, is how to 

compute or computationally forecast a protein's three-

dimensional structure based only on its amino acid sequence. 

The three-dimensional structures of an antibody protein [33] 

are shown below, see Figure 1. As you can see, the folding of 

a protein is quite complex and depends on the arrangement of 

its amino acids. 

 

 
Fig. 1. (A) Three-dimensional structure of antibody structure (protein data 

bank code: Igg1.ent). Antibody is a Y-shaped molecule with two arms (Fabs) 

and a stem (Fc region). These two domains are connected by disulfide links. 

The linkers allow a flexible movement in the antibody. Carbohydrates in the 

Fc region are shown as small red and pink spheres. (B) Antigen binding 

domain, Fab is shown in ribbon representation. Light and heavy chains are 

shown in green and purple, respectively. Fab domain is characterized by β-

strands sandwiched as shown and interleaved with loops called 

complementary determining region (CDR). Six CDR loops mediate antigen 

specificity and binding. [26] 

 

So the question is, can we predict the three-dimensional 

structure of the protein given a sequence of amino acids? In 

addition, the solution to this issue was just recently found. 

DeepMind released AlphaFold [8] in the middle of December 

of 2020, which enhanced the performance or accuracy of this 

application for protein folding by 30% and went as high as 

values in the upper 90s. 

The crucial concept that enabled this breakthrough in 

science, artificial intelligence, and machine learning was to 

visualize the underlying protein as a graph. They depicted it as 

a spatial graph, with the amino acids in the protein sequence 

acting as the nodes, and amino acids that are spatially close to 

one another acting as the edges. This indicates that the graph 

neural network technique was trained to predict the new 

positions of the- of the amino acids given the positions of all 

the amino acids and the edges proximities between them. By 

simulating protein folding in this manner, it was possible to 

anticipate the final positions of the molecules as well as their 

positions at the time of their final folding. 

Therefore, the utilization of graph representation and the 

graph neural network technology was a major component in 

creating this work, in making this scientific achievement in 

protein folding. This, however, was at the node level, where 

we essentially attempted to anticipate the position of each 

node in the graph in order to ascertain its three-dimensional 

arrangement in a protein. 

We will now discuss edge-level machine learning tasks 

[18], where we essentially perform link prediction or attempt 

to comprehend the relationships between various nodes. The 

first instance of this is in recommender systems, which are 

essentially thought of as people engaging with goods, such as 

products, movies, songs, and other media. There will be two 

different kinds of nodes. Both users and products would be 

present. If a person consumes, purchases, reviews, or watches 

a certain movie or song, there is an edge between them and the 

object. We would like to forecast or suggest additional items 

that specific users may be interested in in the future based on 

the structure of this graph, the characteristics of the users, and 

the objects. Thus, a bipartite graph and a graph issue are both 

natural outcomes. 

Modern recommender systems are built on these graphical 

representations and use graph representation learning and 

graph neural networks to create predictions. These systems are 

used in organizations like Pinterest, LinkedIn, Facebook, 

Instagram, Alibaba, and elsewhere [32]. The important 

realization is that we can basically learn how to represent or 

embed nodes of this graph so that connected nodes are 

embedded nearer to one another than unconnected nodes. For 

example, in the case of Pinterest, we might see the images as 

nodes in a graph, with the objective being to embed similar 

nodes—i.e., related images—closer together than unrelated 

ones. 

One way to accomplish this is to build a network that is 

bipartite [6], with photos on top and, for instance, people or 

Pinterest boards at the bottom. Then we can construct a neural 

network approach that will take the attribute information of 

these various pins—basically the content of the image—and 

change it across the underlying graph to produce a robust 

embedding of a specific image. It turns out that this strategy 

performs enormously better than thinking about images alone. 

As a result, graph structure combined with photos produces 

considerably better suggestions than just the images alone. 

Therefore, in this task example, understanding relationships 

between pairs of nodes or pairs of images is achieved by 

essentially stating that related nodes should be embedded 

closer together and that their distance from one another should 

be smaller than that between pairs of images that are unrelated 

to one another. A completely different example of a link level 

prediction task follows. 

This is about adverse effects of medication combinations. 

The issue is that many people take many medications 
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concurrently to manage complicated and comorbid conditions.  

As an illustration, over fifty percent of Americans over the 

age of 70 currently use four, five, or more medicines 

concurrently [16]. In addition, many individuals take 20 or 

more medications to treat a variety of complex comorbid 

conditions. For instance, a person who experiences insomnia, 

depression, and heart disease all at the same time will take a 

variety of medications all at once. The issue is that these 

medications interact with one another, which produces new 

unwanted side effects. In essence, drug interactions cause 

more illnesses or problems for that person, such as additional 

diseases or disorders. 

Additionally, since there are too many distinct drug 

combinations, we are unable to examine each one 

experimentally or in clinical trials to see what adverse effects 

they might cause. Therefore, the challenge is: Can we create a 

predictive engine that, for any given pair of medications, can 

foretell their potential interactions and potential side effects? 

Additionally, this is a graph problem. So allow me to explain 

the formulation process. 

We build a two-level heterogeneous network [31] where 

triangles represent the various medications, and the circles 

represent the proteins in our bodies. Then, the many proteins 

are the targets of how medications function. Therefore, the 

edges are where triangles and circles meet. The protein-protein 

interaction network has been mapped out by biologists, who 

use experiments to determine whether two proteins physically 

interact to control a particular biological process or function. 

We also understand which proteins interact with one another 

through experimental research. Furthermore, this is referred to 

as a protein-protein interaction network. 

The final set of linkages in this graph pertain to known side 

effects. For instance, the link between nodes (e.g. D and E) 

indicates that the side effect of type (S) is known to occur 

when these two medications are taken together. Of course, this 

network of side-effects may be infamously lacking in 

connections. So the challenge is: can we infer or predict the 

missing edges and connections in this network that, in essence, 

would tell us what kinds of side effects we could anticipate if 

we take, or if a person takes two medications at once? 

Therefore, the way we think of this is as a connection 

prediction between triangle nodes of the graph, where the core 

question is, given the two medications, what kind of side 

effects, if any, might be expected. What's more intriguing is 

that you may use this technique very precisely to find novel 

adverse effects that were not previously known. 

For instance, in this case the model output the top ten 

predictions it is most confident in, which essentially read as, 

"If you consider these two pills, then this specific side effect is 

likely to occur." 

Additionally, none of these side effects is listed in the 

FDA's official database. To find reports that could tell us 

whether and provide evidence as to whether this particular pair 

of medications could result in a given side effect, the authors 

picked the top 10 predictions from the model and searched the 

medical literature and clinical medical notes. Then, for the top 

five rankings out of the top 10, we discovered that there is 

some scientific evidence suggesting that these forecasts may 

actually be accurate. 

Therefore, these were the machine learning tasks at the pair-

level of nodes. I talked about side effect prediction and we 

discussed recommender systems. I would want to discuss the 

sub-graph level machine-learning task now. Moreover [here] 

is one that is relatively current that we all use on a daily basis. 

It has to do with predicting traffic. 

For instance, if you open Google Maps today and tell it that 

you want to drive from Stanford to Berkeley, it will tell you 

how long it would take you to get there and what time you 

should arrive. 

I am not sure if you knew this, but in the end, graph 

machine learning is utilized to construct these journey time 

forecasts. The graph is created with nodes that represent 

individual road segments and edges that capture 

connectedness between those segments. Then, our graph 

neural network approach is trained to forecast the estimate that 

time of arrival or travel time based on the conditions and 

traffic patterns on each of the road segments as well as the 

path between the source and the destination of the voyage. It 

has been revealed that Google Maps [27] actually uses this 

graph-based strategy in production. As a result, anytime you 

ask for directions, a graph machine learning approach actually 

tells you when you will arrive at a specific area. 

Finally, I would want to discuss some intriguing and useful 

applications of graph-level machine learning tasks. One is 

about drug discovery. In fact, new medications and antibiotics 

have been discovered using graph-based machine learning [3]. 

Antibiotics are tiny molecular graphs, and we can visualize 

molecules as graphs with atoms as nodes and chemical bonds 

as edges. Therefore, a graph can be used to depict each 

molecule. However, we also have these collections of 

countless molecular units. Which chemicals might have 

therapeutic effects is the question. 

In other words, which compounds ought to be given priority 

so that scientists can test them in the lab to confirm their 

therapeutic impact? In fact, a team at MIT [24] employed a 

graph-based deep learning strategy for antibiotic discovery, 

classifying various chemicals and predicting potential 

molecules from a pool of billions of candidates using a graph 

neural network. Then, in the lab, these predictions would have 

been further confirmed. Recently, a very intriguing, ground-

breaking work on the use of graph-based approaches to 

uncover new medications and novel therapeutic applications 

for various types of molecules was discovered [1]. 

To continue our discussion of drug discovery, let us 

consider graph generation as a method for finding novel 

chemicals that have never been synthesized or taken into 

consideration. In addition, this is incredibly helpful because it 

enables us to create new molecules and structures in a variety 

of focused ways. For instance, we could say, "Generate novel 

compounds that are non-toxic, high solubility, and high drug 
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resemblance." Therefore, we can generate now molecules as 

graphs in a targeted method. 

A second application involves modifying current molecules 

to have a desired attribute. The use case in this instance is that 

you have a little portion of the molecule that, for instance, has 

a specific therapeutic impact. Now we want to finish the 

remaining portions of the molecular scaffold to enhance a 

specific attribute. Solubility and these kinds of deep network 

generative models, for instance, can be applied to activities 

like the creation and optimization of molecules. 

A realistic, physics-based simulation [30], [11], [17] is the 

final graph-level challenge I want to discuss. In this situation, 

we essentially have a choice of materials. We may construct a 

graph on top of this set of particles that we use to represent the 

material that shows how the particles interact with one 

another. Predicting how this graph will change in the future is 

now the fundamental task for machine learning. Moreover, 

this enables us to forecast the deformation of this material. So, 

let me explain how to achieve this. In order to accomplish this, 

we iterate the next strategy. We take the substance and turn it 

into a collection of particles. We created the proximity graph 

based on the proximities and interactions between the 

particles. Now that we have this proximity graph, we can use 

graph machine learning—a graph neural network—to forecast 

future positions and velocities of the particles based on their 

current attributes, which include their positions and speeds. 

We can now move and evolve the particles to their new 

positions based on this prediction, and then we return to the 

first phase where we generate a new graph based on the new 

proximities, predict the new positions, move the particles, and 

repeat this process. In addition, this makes it possible to run 

physics-based simulations very quickly and accurately. 

By drawing an increasing number of youthful users, live-

streaming platforms [19] have recently experienced substantial 

growth in popularity and have emerged as one of the most 

promising methods of online commerce. Live-streaming 

platforms, like more conventional online retail sites like 

Taobao, are also plagued by malevolent online fraud where 

many of the transactions are not real. On platforms for live 

streaming, the anti-fraud methods currently in use are not 

suitable for identifying fraudulent transactions. This is mostly 

due to the distinctive sort of heterogeneous live-streaming 

networks that live-streaming platforms employ to connect 

several heterogeneous types of nodes, including users, 

livestreamers, and products, using a variety of different types 

of edges and edge features.  

In their paper [25], authors offer a novel method for 

detecting live streaming fraud based on a heterogeneous graph 

neural network (called LIFE). With the help of a certain live-

streaming platform's viewers, streamers, and other 

heterogeneous information, LIFE creates an inventive 

heterogeneous graph learning model. Additionally, our LIFE 

framework uses a label propagation technique to manage the 

small number of identified fraudulent transactions needed for 

model training. The suggested method outperforms the 

baseline models in terms of live-streaming platform fraud 

detection efficacy, according to extensive experimental data 

on a large-scale Taobao live-streaming platform. Additionally, 

we carry out a case study to demonstrate that the suggested 

technique. 

These were some instances of graph-level problems and 

significant applications of graph machine learning to a variety 

of disciplines, including, but not limited to, the sciences, 

industry, and numerous consumer goods. 

III. REPRESENTATIONS  

I want to discuss the selection of graph representation in 

this section. What then make up a network or a graph? There 

are two different categories of things in a network. First, there 

are the actual objects or things themselves, which are referred 

to as nodes and vertices, and then there are the connections 

between them, which are referred to as links or edges. In 

addition, after that, the entire system or domain is referred to 

as a network or a graph. 

The letter capital N or capital V is typically used to 

represent nodes, while the letter capital E is typically used to 

represent edges, resulting in the graph G being made up of a 

set of nodes (N) and a set of edges (E). The key benefit of 

graphs is that they speak a common language. This means that 

I can connect actors, for instance, based on the films they 

appeared in, or I can connect people based on their 

relationships with one another, or I can connect molecules, 

such as proteins, based on how those proteins interact with one 

another. 

This means that the same machine-learning algorithm will 

be able to make predictions regardless of whether these nodes 

correspond to actors, correspond to people, or they correspond 

to molecules like proteins if I look at the structure of this 

network and what the underlying mathematical representation 

is in each of these cases. Of course, picking a suitable graph 

representation is crucial. We can connect people who work 

with each other, for instance, if you have a group of people, 

and this will create a professional network. The same group of 

people can also be connected based on their musical 

preferences and interactions, however doing so will result in 

the creation of a social music network. Alternatively, if we 

have a group of scientific articles, we can connect them based 

on citations, or which paper cites which other paper. For 

instance, the underlying network's and the underlying 

representations' quality might be significantly lower if we 

connected them based on whether they share a word in the 

title. 

Therefore, it's crucial to choose carefully what the nodes 

and links are. Therefore, whenever we are given a data 

collection, we must decide how to create the underlying graph, 

including which nodes will represent the objects of interest, 

how those nodes will be related to one another, and which 

edges will connect them. Our ability to properly use networks 

will be determined by the selection of the appropriate network 

representation for a given topic or problem. In some instances, 
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there will be a distinct, unambiguous way to describe this 

issue or topic as a graph; yet, in other instances, this 

representation may not even be distinct. The topics we will be 

able to research and the kinds of predictions we will be able to 

make will depend on how we assign linkages between the 

items. I will now go over some principles and several sorts of 

graphs that we can construct from data in order to illustrate 

some examples of the design decisions we must make when 

co-creating them. 

To start, I will make a distinction between directed [35] and 

undirected graphs [7]. Undirected graphs have links that are 

undirected (bi-directional), which makes them useful for 

modeling symmetric or reciprocal relationships like 

cooperation, friendship, interaction between proteins, and so 

forth. Directed graphs, on the other hand, have links that are 

directed (one direction), where each link has a direction, a 

source, and a destination indicated by an arrow. Phone calls, 

financial transactions, following on Twitter, and other real-

world instances of links with a source and a destination 

include these forms of links. 

For undirected graphs, we can discuss the idea of a node 

degree, which is the second form of graph that we will discuss. 

The number of edges that are immediately close to a specific 

node is known as the node degree. The average node degree is 

just that—the average of all the nodes in the network's 

degrees. In addition, if you do the math, it comes out to be 

twice as many edges as there are nodes in the network. The 

reason for the number 2 is that each edge is counted twice 

when calculating the nodes' degrees, correct. Because both 

ends attach to the same node, having a self-edge or self-loop 

adds a degree of two rather than one to the node. 

We distinguish between in-degree and out-degree in 

directed networks; in-degree is the quantity of edges that point 

in the direction of the node. Another extremely common sort 

of graph structure that is used frequently and is highly natural 

in several disciplines is known as a bipartite graph. 

Additionally, a bipartite graph is a network of nodes that often 

consists of two different types of nodes and in which nodes 

only communicate with other nodes of the same type. 

A bipartite graph, for instance, is one in which the nodes 

can be divided into two divisions, and in which the edges only 

move from the left partition to the right partition and not 

inside the same partition. Bipartite graphs are examples that 

naturally exist, such as links between writers of scientific 

articles and the papers they published, actors and the movies 

they appeared in, users and the movies they rated or viewed, 

and so on. For instance, a bipartite graph representing people 

purchasing goods would have a set of customers, a set of 

goods, and a link connecting the client to the good she bought. 

Following the definition of a bipartite network, we can now 

describe the concepts of a folded or projected network, 

allowing us to construct networks for author cooperation or 

movie co-rating, among other things. Furthermore, the concept 

is as follows: if I have a bipartite graph, I can project it to 

either the left or the right side. And then- and when I project it, 

I essentially only utilize the nodes from one side in my 

projection graph, and I connect the nodes by saying that if two 

nodes have at least one neighbor in common, I will make a 

connection between them. In addition, as I mentioned, 

bipartite or multipartite graphs are highly common if you have 

numerous sorts of edges. This is particularly true if you have 

two different categories of nodes, such as users and items, 

users and movies, authors and papers, and so on. How we 

represent graphs is another intriguing aspect of them; and how 

do we represent graphs is an intriguing subject. 

A graph can be represented using an adjacency matrix, for 

example. In other words, if we have an undirected graph with, 

say, four end nodes, for example see Figure 2, we will 

generate a square matrix with this matrix being binary.  

 

 
Fig. 2. Undirected graph 

 

The only values accepted are 0 and 1. In essence, if nodes i 

and j are connected, an element of matrix i, j will be set to 1; 

otherwise, it will be set to 0. For instance, since 1 and 2 are 

linked, there is a 1 at entry 1, row 1, column 2. And also, 

because 2 is connected to 1 at row 2, column 1, we also have a 

1. As a result, adjacency matrices of undirected graphs are 

symmetric by nature, see Figure 3.  

 

 
Fig. 3. Adjacency matrix for an undirected graph. 

 

Figure 4 shows is a directed graph.  

 
Fig. 4. A directed graph. 

 

The matrix will not be symmetric if the graph is directed 

since 2 links to 1. There is a 0 because even though we have a 

1, it does not connect to a 2, see Figure 5. 
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Fig. 5. Adjacency matrix for a directed graph. 

 

In a similar vein, we can consider node degrees to be 

nothing more complicated than a summing across a given row 

or a given column of the graph's adjacency matrix. So instead 

of kind of trying to figure out how many edges are adjacent 

here, we can simply go ahead and add up- basically, count 

how many other nodes this particular node is related to. This is 

for undirected graphs. For directed graphs, in and out degrees 

will be sums over the columns and sums over the rows of the 

graph adjacency matrix.  

The fact is that real-world networks are incredibly sparse. 

This implies that if you were to examine the adjacency matrix, 

or series on adjacency matrix, of a real-world network, where 

for every, row i, column j, (we put a dot if there is an edge and 

otherwise the cell is empty) you would obtain sparse matrices 

where, where there are significant portions of the matrix that 

are empty. As a result of their great sparsity, these matrices' 

characteristics are affected in a significant way. 

Let me give you an illustration. The maximum degree of a 

node, or the number of connections a node has, is n minus one 

if your network contains n nodes, so you can theoretically link 

to any other node in the system. In other words, if you 

consider yourself a person and consider the human social 

network, the total number of friends you may possibly have is 

every other human in the entire planet. Nobody, however, has 

seven billion friends, is that right? Our social circle is much, 

much smaller. 

Therefore, let us say that the human social network is 

exceedingly sparse. It turns out that many other different types 

of networks, such as power grids, Internet connections, 

scientific collaborations, email graphs, and so on and so forth, 

are also extremely sparse. They have an average degree of 

about 10 or even up to 100, you know. So what is the result? 

The underlying adjacency matrices are hence very sparse. As a 

result, we have always represented the matrix as a sparse 

matrix rather than a dense matrix. 

There are two other ways to display graphs. One is to 

simply represent it as a list of edges, or an edge list. Because 

we can easily describe it as a two-dimensional matrix, this 

representation is extremely common in deep learning systems. 

The issue with this model is that it is exceedingly difficult to 

perform any type of graph modification or analysis because, in 

this instance, even calculating a node's degree is not 

straightforward. The idea of an adjacency list is a much, much, 

better representation for a graph's examination and 

manipulation. Adjacency lists are beneficial because they are 

simpler to use in big and sparse networks. In addition, an 

adjacency list only enables us to rapidly access all of a given 

node's neighbors. 

You may think of it as simply storing a list of a node's 

neighbors for each node. Consequently, a list of nodes to 

which a particular node is connected. In the case of an 

undirected graph, neighbors could be stored. If the graph is 

connected, it is possible to record both the outgoing and 

incoming neighbors based on the edge's orientation.  

The final significant point I want to make is that these 

graphs can, of course, have properties linked to them. As a 

result, attributes or properties can be connected to node 

addresses as well as complete graphs. Therefore, for instance, 

a weight could exist on an edge. 

How strong is the relationship? It might be able to have my 

ranking. It may possess a type. It may be clear whether a 

connection is built on friendship or on hostility, complete 

mistrust, or anything similar. Moreover, edges can have a 

variety of various types of attributes, such as the duration of a 

phone call. If the nodes represent people, the properties they 

may have include age, gender, interests, location, and so forth. 

If a node is a chemical, its chemical mass, chemical formula, 

and other chemical qualities might be represented as the node's 

attributes. 

Additionally, complete graphs may include traits or features 

dependent on the characteristics of the underlying object that 

the graphical structure is describing. 

As a result, the graphs you will be evaluating will have both 

their associated properties and their topological nodes and 

edges. As I said, some of these features can also be directly 

expressed in the adjacency matrix. So the adjacency matrix 

may easily capture, for instance, edge attributes like weights? 

We may now have adjacency matrices with real values instead 

of binary ones, where the strength of the connection simply 

relates to the value of that element. As a result, the value for 

the link between two and four is four, whereas the relationship 

between one and three has only a 0.5 weight and is therefore 

weaker.  

As an additional essential point, we should consider the 

possibility of self-looping nodes while designing graphs. For 

instance, node four in this instance has a self-loop, and as a 

result, its degree is now equal to three. Self-loops match the 

items in the adjacency matrix's diagonal. In addition, in some 

circumstances, we might even construct a multi-graph in 

which we permit several edges to exist between a pair of 

nodes. 

A multi-graph can sometimes be thought of as a weighted 

graph where the entry on the matrix counts the number of 

edges, but there are other times when you want to represent 

each edge independently because they may have various 

characteristics and traits. In nature, multi-graphs and self-

loops both happen rather frequently. For instance, if you 

consider phone call transactions, there may be several 

transactions taking place between a pair of nodes, and we can 

precisely model this as a multi-graph. 
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Since we are dealing with graphs, I also want to discuss the 

idea of connectedness, or more specifically, whether a graph is 

linked or disconnected. A graph is said to be linked if any pair 

of nodes in the graph can be connected by a path that runs 

along its edges. 

 

 
Fig. 6. Disconnected graph: made up by two or more connected 

components 

 
Fig. 7. Connected graph: any two vertices can be joined by a path 

 

As an illustration, this particular graph has three connected 

components (see Figure 6) while the other graph does not (see 

Figure 7), making it the connected graph. This has three 

connected components: a single connected component, a 

second connected component, and a third connected 

component, the isolated node h. 

This is the idea of connectivity for undirected graphs, and 

what is interesting about it is that when we disconnect a graph 

and examine the structure of the underlying adjacency matrix, 

we will see these block diagonal structures. In essence, if a 

graph is made up of two components, then we will have block 

diagonal structures where the edges only connect the nodes 

inside each component. 

Directed graphs can also be used to broaden the concept of 

connection. Strong connectivity and poor connectivity are the 

two forms of connectivity being discussed. Simply put, a 

graph that is linked if we ignore the direction of the edges is 

referred to as a weakly connected directed graph. A strongly 

connected graph or a graph is connected if there is a directed 

path between every pair of its nodes. This means that if the 

network is strongly connected, a directed path must exist from, 

for instance, node A to node B and from node B back to node 

A. 

This also means that we may discuss the idea of strongly 

connected components [20], which are collections of nodes in 

a network where each node can contact another node in the 

collection via a directed path. Because they are on a cycle, for 

instance, nodes A, B, and C in this instance constitute a tightly 

connected component. Therefore, we may visit any other node 

from any node.  

 
Fig. 8. Nodes A, B, and C in this instance constitute a tightly connected 

component. 

 

In this example shown on Figure 9, a directed graph with two 

strongly connected components, again with two cycles on 

three nodes.  

 
Fig. 9. A directed graph with two strongly connected components. 

 

Thus, the topic of graph representations and methods for 

making them from actual data is now complete. 
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IV. CONCLUSION  

In the first part of this paper, we discussed machine learning 

with graphs and its different use cases. Machine-learning 

prediction challenges at the node level, edge level, and graph 

level were discussed. The selection of a graph representation 

was then discussed in terms of directed and undirected graphs, 

bipartite graphs, weighted and unweighted graphs, adjacency 

matrices, and some definitions from graph theory, such as the 

connectivity of graphs, weak connectivity, and strong 

connectivity, as well as the concept of node degree. 
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