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I. INTRODUCTION  

In the mathematical discipline known as fractional calculus, 

arbitrary order integrals and derivatives are studied and used in 

various applications. Despite being a misnomer, the term 

"fractional" is still in usage today. 

Calculating fractions may be thought of as both an old and 

new subject. It is an old issue because it has been developed up 

to the present day based on some theories by Leibniz (1695, 

1697) and Euler (1730). However, since it has only been the 

subject of professional conferences and treatises since 1974, it 

might also be regarded as a novel issue. 

Liouville, who conducted the initial thorough investigation 

of fractional calculus, was drawn to Abel's answer. Liouville 

was effective in applying his concepts to future theory issues in 

1832. He discovered two formulations for the fractional 

derivative of the functions, but they were too constrained to 

hold up over time. 

The first person to try to solve differential equations with 

fractional operators was Liouville. He defended the presence of 

a supplementary function in 1834. The complementary function 

was the subject of several papers written by Greatheed in 1839, 

and he was the first to draw attention to the complementary 

function's ambiguous nature. Riemann created his fractional 

integration theory in 1892. He derived from a generalisation of 

the Taylor series. 

 
He question of the existence of the complementary function 

Ψ(t) caused considerable confusion. Indeed, the present-day 

definition of fractional integration is “(1),” without a 

complementary function. 

The study by Sonin seems to be the first effort that 

eventually led to what is now known as the Riemann-Liouville 

concept of fractional derivative. He began with the integral 

formula of Cauchy. From 1868 to 1872, Letnikov published 

four papers on this subject. Sonin's paper is expanded upon in 

his paper, which was published in 1872. The Cauchy formula's 

th derivative is given by 

                                        (2) 

Since there is no issue with generalisation to any value,  

 the integrand in “(2),” no longer contains a 

pole but a branch point when is not an integer. Then, a branch 

cut would be necessary for a proper contour, which was 

mentioned in Sonin and Letnikov's work but was not 

incorporated.  
In 1884, Laurent released his paper, which also included the 

Cauchy integral formula. In contrast to the closed circle of 

Sonin and Letnikov, his contour was an open circle on a 

Riemann surface. The definition was created using the contour 

integration technique. 
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for integration to an arbitrary order. When  in “(3),” we 

have Riemann definition “(1),” but without a complementary 

function. The most used version is setting  
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This form of the fractional integral is often referred to as the 

Riemann-Liouville fractional integral. For the fractional 

integrals “(3),” and “(4),” we adopt the widely used notations 

and  respectively. 

In 1892, Heaviside published a number of papers in which 

he showed how certain linear differential equations may be 

solved by the use of generalized operators. His methods, which 

have proved useful to engineers in the theory of transmission of 

electrical currents in cables, have been collected under the name 

Heaviside operational calculus. 

Heaviside operational calculus is concerned with linear 

functional operators. He denoted the differentiation operator by 

the letter  and treated it as if it were a constant in the solution. 

For example, the heat equation in one dimension is 
2

2

2
,

u u
a

x t

 
=

                                                            (5) 

where 
2a  is a constant and u  is the temperature. If we let     

P
t


=

      , then “(5),” becomes  
2 2 .D u a Pu=                                                                   (6) 

Gregory put the solution of “(5),” into symbolic operator form 
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( , ) .xaP xaPu x t Ae Be−= +
                              (7) 

This is exactly what you would get if you solved “(6),” 

assuming P  a constant. 

However, Heaviside's clever applications were what really 

helped the theory of these generalised operators advance. In 

order to get the right outcomes, he increased the exponential in 

powers of
1 2P , where 

1 2 1 2 1 2 1 2/ .P d dt D= =  In the 

theory of electrical circuits, Heaviside found frequent use for 

the operator 
1 2P . 

Although his results were accurate, he was unable to defend 

his methods, and it took a lot longer for Bromwich to do so in 

1919. 

There was only a little amount of published work on the 

fractional calculus between 1900 and 1970. Al-Bassam, Davis, 

Erdélyi, Hardy, Kober, Littlewood, Love, Osler, Riesz, Samko, 

Sneddon, Weyl, and Zygmund were some of the authors. 

The National Science Foundation funded the first 

international conference on fractional calculus, which took 

place at the University of New Haven in Connecticut in 1974. 

Theory were among the topics covered, all of which were 

highly enthralling. The first book by Oldham and Spanier 

addressing fractional calculus was released in 1974. 

Springer-Verlag published the conference proceedings. 

Numerous eminent mathematicians were present. Among these 

giants were Askey, Mikolás, and a large number of the 

aforementioned mathematicians. Papers on the fractional 

calculus and extended functions, inequalities found by using the 

fractional calculus, and applications of the differential 

derivatives to probability. 

In 1984, the University of Strathclyde in Glasgow, Scotland, 

held the second international conference on fractional calculus. 

The following people contributed to the proceedings: 

Heywood, Kalla, Lamb, Lowndes, Nishimoto, Rooney, and 

Srivastava. 

At Nihon University in Tokyo, the third international 

conference took place in 1989. Al-Bassam, Bagley, Brychkov, 

Camoos, Gorenflo, Joshi, Kalla, Love, Mikolás, Nishimoto, 

Owa, Prudnikov, Ross, Samko, and Srivastava were a few of 

the numerous contributors. 

Fractional derivatives provide an excellent tool for the 

description of memory [1], [2] and hereditary properties of 

various materials and processes. This is one of the advantages 

of fractional derivatives in comparison with classical integer-

order models. Also, fractional calculus finds use in many other 

fields of science and engineering including control theory [3]-

[5], fractals theory [6], optics [7], fluid flow [8], diffusion [9]-

[10], electromagnetic theory [11]-[12], potential theory [20] 

and more. Interested readers in this topic can see also [8] and 

[21]. 

II. FRACTIONAL DERIVATIVES AND INTEGRALS OTHER  

The conventional fractional derivatives have many 

definitions. Fractional derivatives such as Grünwald-Letnikov, 

Riemann-Liouville, Caputo, Riesz, and Riesz-Feller are a few 

of them. Iterated derivatives with the same standard derivative 

are referred to as sequential derivatives. 

A brief summary of the meanings and relationships of a few 

fractional derivatives is offered in the following subsections. for 

additional information and proofs of these relationships, see [8]. 

A. Riemann-Liouville Fractional Integral 

The Riemann-Liouville fractional integral operator “(6),”of 

order  0   of a function  
1( ) [ , ]f t L a b  and is defined as 

1

0

1
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                                 (8) 

Some properties of 
( )a tJ f t

are: 

For , 0    and 1  −  

( ( )) ( ),a t a t a tJ J f t J f t   +=
                                       (9) 

( ( )) ( ( )),a t a t a t a tJ J f t J J f t   =
                                       (10) 
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+ +
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Proofs of these properties and other relations involving 

( )a tJ f t

are given in several text books ( see for example [13] 

Ch.2 and [14] Ch.2). 

B. Grünwald-Letnikov Fractional Derivative 

Consider the Riemann-Liouville fractional integral “(6),”. If 

the function ( )f t  has 1m +  continuous derivatives in the closed 

interval [ , ]a t , then for 1m m  +  
( )

( 1)

0

( )( ) 1
( ) ( ) ( ) ,

( 1) ( 1)

tk km
m m

a t

k a

f a t a
J f t t f d

k m


   

 

+
+ +

=

−
= + −

 + +  + +
 

                 (12) 

by replacing each   by ( )−  we get  

               (13) 

which is the fractional derivative of the Grünwald-Letnikov see 

[8] and [20]. 

The following relations are utilised to assess compositions of a 

derivative of integer-order with a derivative of arbitrary order. 

( ( )) ( ),
n

n

a t a tn

d
D f t D f t

dt

 +=
                                    (14) 

( )1

0

( )( )
( ( )) ( ) .

(1 )

n k k a nn
n

a t a tn
k

d f a t a
D f t D f t

dt k n

 



− −−
+

=

−
= −

 + − −


            (15) 

From equations “(14),” and “(15),” when
( ) ( ) 0,kf a =   

0,1,..., 1,k n= −  it is found that 

( ( )) ( ( )) ( ).
n n

n

a t a t a tn n

d d
D f t D f t D f t

dt dt

  += =
              (16) 

C. Riemann-Liouville Fractional Derivative 

It should be noted that the Grünwald-Letnikov fractional 

derivative definition is based on the premise that the function 

must always be continuously differentiable. Consequently, the 

following definition for the Riemann-Liouville fractional 

derivative appeared. 

1
( ) ( ) ( ) ,

(1 )

t

a t

a

d
D f t t f d

dt

   


−= −
 − 

 (17) 
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or 

1( ) ( ( )),a t a t

d
D f t J f t

dt

 −=
                                (18) 

and for the general case 1m m−    

( ) ( ( )),
m

m

a t a tm

d
D f t J f t

dt

 −=
1,2,...m =                   (19)                    

In particular, ([18] section 2.1) when 0 =  
0 ( ) ( ),a tD f t f t=

                                                   (20) 

and when  

( ) ( ).
n

n

a t n

d
D f t f t

dt
=

                                                  (21) 

The following relations are utilised to evaluate 

compositions between a derivative of integer-order and a 

derivative of arbitrary order. 
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which is the same relation as “(14),” and “(15),”. 

As before from equations “(22),”and “(23),” when 
( ) ( ) 0,kf a =  0,1,..., 1,k n= − one obtains 

( ( )) ( ( )) ( ).
n n

n

a t a t a tn n

d d
D f t D f t D f t

dt dt

  += =
       (24) 

Some properties of this definition are[4], [8]: 

i.   If  ,p q  are two positive real numbers and t a , then 

( ( )) ( ).p q p q

a t a t a tD J f t D f t−=
                               (25) 

ii.   If  0 1 ,k q k −   then 

1
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If the function ( )f t  is ( 1)n − -times continuously 

differentiable and 
( ) ( )nf t  is integrable in[ , ]a b , t b  then 
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D. Caputo Fractional Derivative 

Unfortunately, the Riemann-Liouville method results in 

lower limit t a=  initial conditions with fractional derivatives, 

such as    etc.  

Initial value problems with such initial conditions can be 

successfully solved mathematically, but there is no known 

physical interpretation for such types of initial conditions [8] 

Therefore, the definition of Caputo fractional derivative is used 

to overcome this problem. For an absolutely continuous 

function ( )f t , Caputo fractional derivative is defined as 

   0

1
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C
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and for the general case 1m m−    
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m
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d
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for absolutely continuous 
( )

m

m

d
f t

dt . In particular, ([13] section 

2.4) when  0 =   
0 ( ) ( ),C

a tD f t f t=
                                                                      (31) 

and when  

( ) ( ).
n

C n

a t n

d
D f t f t

dt
=

                                                 (32) 

Caputo definition also has the following advantages: 

i.  The initial conditions for FDEs and FPDEs with Caputo 

derivatives take on the same form as for integer-order 

differential equations, such as 
' ''( ), ( )f a f a  etc., 

which have known physical interpretation.   

ii. The Riemann-Liouville derivative of a constant does not 

equal zero, although the derivative calculated using the Caputo 

formulation does. 

0 ,       is a constant
(1 )

t

ct
D c c






−

=
 −                      (33) 

Therefore, this definition was investigated by many authors 

( see for example [15] and [16] ). It has the following properties: 

i.    If 1 ,m m−     and 
,   1,mf C   −

 then:   
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iii.  

( 1)
.

( 1)
tD t t   

 
− +

=
 − +                                   (36) 

For more details on Caputo fractional derivative definition 

and its properties 

see [8, 17, 18]. 

E. Riesz Fractional Derivative 

The Riesz fractional derivative xR

 is defined as [22] 
[ ( ) ( )]

( ) ,
2Cos( / 2)

x

D u x D u x
R u x

 



+ −+

= −

 
0 2,     1                                                          (37) 

where ( )D u x
+  and 

( )D u x
−  are the Weyl fractional 

derivatives 

1

2
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= 

                (38) 

where 
I 
 denote the Weyl fractional integrals of order 

0  , given by 
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When 0 = the Weyl fractional derivative degenerates into 

the identity operator 
0 ( ) ( ) ( ).D u x Iu x u x = =

                                         (40) 

For continuity we get 
2

1 2

2
( ) ( ),     ( ) ( ).   

d d
D u x u x D u x u x

dx dx
 =  =

    (41) 

Evidently, in the case 2 = it takes the form of the second-

derivative operator 
2

2

2
( ) ( ).   x

d
R u x u x

dx
=

                                     (42) 

For the case 1 = we have 

1 1 ( )
( ) ( ) ,x

d d u z
R u x Hu x dz

dx dx z x



−

= =
−

           (44) 

where H is the Hilbert transform and the integral is 

understood in the Cauchy principal value sense. 

F. Riesz -Feller Fractional Derivative 

The Riesz-Feller fractional operator   for order  for skewness  

, and for the one-variable function  is defined as [19] 

( ) [ ( , ) ( ) ( , ) ( )],x L x R xD u x c D u x c D u x  
    − += − +  

Where 

( ) ( ) ,

m

m

x x

d
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− −
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                (45) 

( ) ( 1) ( ) ,

m

m m

x x

d
D u x I u x

dx

 −
+ +

 
 = −    

                (46) 

where  In formula“(44),” coefficients 

( , ),  ( , )L Rc c   
, 

(for , and ) have the 

following forms: 
( ) ( )

sin sin
2 2( , ) ,         ( , ) .

sin( ) sin( )
L Rc c

     

   
 

− +

= =

     (47) 

he left- and right-side of Weyl fractional integrals (Carpinteri 

and Mainardi, 1997; Podlubny, 1999; Samko., 1993) are what 

are meant by the fractional operators xI−  and x I+ and in 

expressions “(45),”and “(46),” 

1
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−
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1

1 ( )
.

( ) ( )
x

x

u z
I dz

z x







+ −
=
 −

                                (49) 

If 
0, =

the Weyl fractional integrals are defined as the 

identity operator. 

For 1 = , the representation (1.44) is not valid and has to be 

replaced by the formula 
1 1

0( ) [cos( / 2) sin( / 2) ] ( ),x D u x D D u x  = −
    (50) 

where Feller initially noted in 1952 that the operator is related 

to the Hilbert transform: 

1

0

1 ( )
( ) .

d u z
D u x dz

dx x z



−

=
−

                         (51) 

and D stays for the first derivative 
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