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Abstract—  Finite difference methods (FDM) are a popular class of 

numerical techniques for solving differential equations this is done by 

approximating derivatives with finite differences. Compact finite 

difference schemes enable us to produce more precise results with 

constrained grid sizes. The idea behind the derivation of the high-

order compact scheme is to operate on the differential equations as 

an auxiliary relation to obtain finite difference approximations for 

high-order derivatives in the truncation error. In this paper, to 

generate approximate derivatives using finite differences, we shall 

discuss Taylor series expansions. For obtaining a more accurate 

numerical solution we will derive a compact finite difference 

methods. Finally, we will compare the two methods  by solving two-

dimensional Poisson equation in a rectangular domain.  

 

Keywords— Compact finite difference schemes. Finite difference 

methods. Poisson equation. Taylor series. 

I. INTRODUCTION  

One of the simplest and most established techniques for 

solving differential equations is the use of finite difference 

approximations for derivatives. Euler, L. (1768), previously 

knew it in one spatial dimension, and Runge, C. is likely the 

one who expanded it to dimension two (1908). The 

development of finite difference approaches in numerical 

applications was sparked by the appearance of computers in 

the early 1950s, which provided a practical framework for 

addressing challenging issues in science and industry [1]. 

Mickens, R. (2002) introduce non-traditional finite difference 

techniques that are helpful in the construction of differential 

equations. In his study, he discussed the precise finite 

difference scheme as well as the guidelines for creating 

nonstandard schemes and their use [2]. Sun, H. and Zhang, J. 

(2004) For the 2D convection diffusion problem, a sixth-order 

explicit finite difference discretization method based on the 

Richardson Extrapolation Technique and the Alternating 

Direction Implicit Method was developed [3].  Zhang, J., 

Geng, X., et.al. (2012) analyzed two approaches for enhancing 

the accuracy of the standard second order finite difference 

scheme in solving one dimensional elliptic partial differential 

equations. These two approaches are the fourth order compact 

difference scheme and Richardson extrapolation for the fourth 

order accuracy. They studied the truncation error of these two 

approaches. They provided both analytic and numerical 

evidence to clarify difference between two approaches [4]. 

Morsy, S.A. and Azab, M.S. (2012) in their research paper 

new finite difference method is introduced which is known as 

logarithmic finite difference method (log FDM). This method 

is improved for solving linear or nonlinear higher order partial 

differential equations [5]. Izadian, J.l., Ranjbar, N., et.al. 

(2013) Application of Generalized finite difference method for 

solving elliptic equation on irregular mesh are given. This 

method is used to 3-D Poisson’s equation with Dirichlet 

boundary condition on irregular grids in a cuboid. By using 

Taylor series expansion and least squares, partial derivatives 

are approximated [6]. Zhai,S. et al. (2014) proposed sixth-

order discretization method. To create difference schemes, 

they select a specific dual partition and use Lagrange 

interpolation and the Simpson integral formula. [7]. Zapata, 

M.U. and Balam,R.I., (2017) The two-dimensional Poisson 

equation is solved by implicit finite difference formulae in 

their research report using a novel family of high-order finite 

difference techniques. The Taylor series expansion and wave 

plane theory analysis are used to derive the implicit 

formulation, which is then built using a few tweaks to the 

conventional finite difference techniques. For the inner grid 

points, the approximations attain high order accuracy, and for 

the boundary grid points, up to ninth order accuracy [8]. Xia, 

H. and Gu, Y. (2021) made the first attempt to apply the 

generalized finite difference method (GFDM), a newly-

developed meshless collocation method, for the numerical 

solutions of three-dimensional (3D) piezoelectric problems 

[9]. Jin, S. and Yue, Y. (2022) investigated time complexities 

of finite difference methods for solving the high-dimensional 

linear heat equation, the high-dimensional linear hyperbolic 

equation and the multiscale hyperbolic heat system with 

quantum algorithms [10].  

For the conventional finite difference methods, a 

classical spatial discretization, such as the second-order 

central difference scheme, fails to approach the exact solution 

of most equations; in order to obtain a more accurate 

numerical solution, more nodes and smaller mesh sizes must 

be added, which would take up more storage space and 

processing time [11]. We must improve the numerical 

approximation's order of precision in order to obtain more 

accurate results for fixed mesh size, which necessitates 

expanding the grid's point stencil [12]. However, this leads to 

various issues, such as the challenging approaches to the 

boundary conditions, the approximation of the points next to 

the borders, and the expansion of the stiffness matrix's 

bandwidth. Higher-order numerical techniques should be used 

to solve numerous application issues accurately. For the 

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://www.sciencedirect.com/topics/mathematics/finite-difference-methods
https://www.sciencedirect.com/topics/mathematics/finite-difference-methods
https://www.sciencedirect.com/topics/engineering/finite-difference-method
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aforementioned reasons, a compact finite difference technique 

is required to numerically solve several differential equations 

[13–14]. By creating high-order compact finite difference 

methods, one may calculate more accurate solutions with 

constrained grid sizes. Turkel, E. and Singer, I. (1998) have 

made significant contributions to this field [15]. In recent 

years, the high accuracy compact difference method has 

attracted more and more attention; [16–17]. Using a Taylor 

series expansion, Sari, M. et al (2010). developed a tenth-order 

finite difference scheme, proposed to solve one-dimensional 

advection–diffusion equation [18]. Gurarslan et al. (2014) The 

one-dimensional advection-diffusion equation was 

numerically solved using a sixth-order compact difference 

scheme in space and a fourth-order Runge-Kutta scheme in 

time. It has been shown to be incredibly precise in resolving 

the Pe 5 contamination transfer equation [19]. Cui, M.R. 

(2009) obtained a fully discrete implicit scheme based on the 

Grünwald-Letnikov discretization of the Riemann-Liouville 

derivative after approximating the second-order derivative 

with regard to space by the compact finite difference [20]. An 

effective and stable compact fourth-order technique for the 

phase field crystal equation was presented by Li, Y.B., and 

Kim in 2017 [21]. Li, L., Jiang, Z., and Yin, Z. (2018) 

developed an effective and practical compact finite difference 

approximation to a fourth-order method for resolving the 

linear one-dimensional convection-diffusion problem [17]. 

Overall, the creation and use of compact finite difference 

approaches for the numerical solution of the convection-

diffusion equations has garnered considerable interest. 

This paper is organized as follows, section 2 introduces 

forward, backward, and centered difference approximations of 

first and higher derivatives. Section 3 discusses compact finite 

difference for higher order derivatives. Section 4 contains 

numerical example to demonstrate high accuracy for compact 

finite schema. Concluding remarks are given in section 5. 

II. FINITE DIFFERENCE FORMULAS 

In this part, we shall introduce the idea of numerical 

differentiation. Remember that in order to obtain finite-

divided-difference derivative approximations, we shall need 

Taylor series expansions. We shall provide first and higher 

derivative forward, backward, and center difference 

approximations. These estimations contained  errors. 

Their mistakes were inversely correlated with step size. This 

degree of precision is attributable to the amount of Taylor 

series terms that were kept in mind when these formulae were 

derived [1]. 

A. Forward Difference Approximation of the First Derivative 

To determine a former value based on a current value, the 

Taylor series can be extended forward, as in 

( ) ( ) (
2

(1

1

) 2)

1!
( ) ( )

2!
ii i ix

h h
f x f f xx f+ = + + +  

 

(1) 

After taking the first derivative, truncating this equation 

and rearrange it produces. 

( ) ( )1(1) ( )
i

i

i i
f x f x f

h h
f x

+− + 
= =  

 

(2) 

where  is referred to as the step size, which is the length of 

the interval that the approximation is made over, and  is 

referred to as the first forward difference. It uses data, hence 

the phrase "forward" difference at i and 1i + to estimate the 

derivative. where the error is . 

There are several ways to construct the Taylor series from 

the forward divided difference to numerically approximate 

derivatives. For instance, the derivation of (2) may be used to 

build backward and centered difference approximations of the 

first derivative. Higher-order terms of the Taylor series can be 

used to create first derivative estimates that are more precise. 

Finally, second, third, and higher derivatives of all the 

aforementioned versions can be produced. Brief explanations 

of the methods used to develop some of these examples are 

provided below. 

B. Backward Difference Approximation of the First 

Derivative 

The Taylor series can be expanded backward to calculate 

a previous value on the basis of a present value, as in  

( ) ( )
2

(2)

1

(1) ( )
1! 2

(
!

)i i ii

h
x

h
f x f x f xf− = − + −  

(

(3) 

Truncating this equation after the first derivative and 

rearranging yields 

( ) ( )1(1) ( )
i

i

i if
h

f x f x f

h
x

−− 
= =  

(

(4) 

where  is referred to as the first backward difference. It is 

termed a “backward” difference because it utilizes data at 

i and  to estimate the derivative. where the error is . 

C. Centered Difference Approximation of the First Derivative 

A third way to approximate the first derivative is to 

subtract backward Taylor series from the forward Taylor 

series expansion to yield:  

( ) ( ) ( ) ( ) ( ) ( )
3

3

1 1

12 2

1! 3!
i i i i

h h
f x f x f x f x+ −− = + +  

 

 (5) 

which can be solved for 

( ) ( )
( ) ( ) ( ) ( )

3
31 11 2

2 3!

i i

i i

f x f x h
f x f x

h

+ −−
= + +  

 

(6) 

Or  

( ) ( )
( )1 1(1) 2( )

2

i i

i

f x f x
f x O h

h

+ −−
= +  

 

(7) 

The first derivative is shown as a centered difference in the 

previous equation. In contrast to the forward and backward 

approximations, which were of the order of h, take note that 

the truncation error is of the order of . It follows that the 

cantered difference is a more realistic depiction of the 

derivative, according to the Taylor series analysis. For 

instance, if we used a forward or backward difference to halve 

the step size, we would roughly halve the truncation error, 
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however if we used a center difference, the error would be 

quartered. 

D. Finite Difference Approximations of Higher Derivative 

Besides first derivatives, the Taylor series expansion can 

be used to derive numerical estimates of higher derivatives. To 

do this, we write a forward Taylor series expansion for 

 in terms of  

( ) ( )
( )

2

(1) (2)

2

22
( ) ( )

1! 2!
i i i i

hh
f x f x f x f x+ = + + + 

 

(8) 

Equation (1) can be multiplied by 2 and subtracted from 

(8) to give 

( ) ( ) ( ) 2 (2)

2 12 ( )i i i if x f x f x h f x+ +− = − + +   

(9) 

which can be solved for  
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This relationship is called the second forward finite 

divided difference. Similar manipulations can be employed to 

derive a backward version 
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and a centered version 
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As was the case with the first-derivative approximations, 

the centered case is more accurate. 

By using additional terms from the Taylor series 

expansion, the high-accuracy divided-difference formulas can 

be created. The forward Taylor series expansion, for instance, 

can be expressed as 
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By eliminating the second- and higher-derivative terms 

from this finding, we were left with the following result: 
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In contrast to this approach, we now retain the second-

derivative term by substituting the following approximation of 

the second derivative 
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into (14) to yield 
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or, by collecting terms 
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Note how adding the second derivative term increased 

precision to . The centering and backward formulae, as 

well as the approximations of the higher derivatives, may all 

be improved in a similar manner. The formulas are 

summarized in the below tables [22-23]. 

 
Table 1. Back Ward Divided Difference 
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Second derivative 
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Table 3. Centered Divided Difference 

First derivative   
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III. COMPACT FINITE DIFFERENCE  

The concept behind the derivation of the high-order 

compact scheme is to operate on the differential equations as 

an auxiliary relation to obtain finite difference approximations 

for high-order derivatives in the truncation error. This section 

will introduce a compact finite difference scheme (CFDS). De, 

A.k. and Eswaran, V. [24] defined compact schemes for 

simulating first order derivatives as 

` 1
,

l m

k i k l i l

k l l m

f a f
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(19) 
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0

1,
k k
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−

= = ,where ,l m N By expanding the 

summations, the scheme given in the above equation can be 

expressed as  
` ` ` ` `
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(20) 

The left-hand side (LHS) of (20) involves 2 1l +  

derivative values while the right-hand side (RHS) has 

2 1m+  node stencil. The scheme given in (20) is restricted to 

2l   and 3m   because of the computational complexity in 

the use of implicit schemes. Any scheme can achieve the 

highest formal order of accuracy by increasing the value of 

,l m or both. By rewriting the RHS components of (20) into 

second order accurate centered finite differences, the centered 

compact schemes may be created. In particular 

(20) for 2l =  and 3m =  reduces to 
` ` ` ` `

2 1 1 2

1 1 2 2 3 3

2 4 6

i i i i i

i i i i i i
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f f f f f f
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+ + + + =

− − −
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(21) 

By substituting the first derivative in (21) with its 

corresponding higher-order derivative, similar centered 

compact schemes can be derived (21). The centered CFDS for 

2l = and 3m =  for an approximation of the second 

derivative is given by [25] 

https://www.sciencedirect.com/science/article/pii/S259003742100008X#b6
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd3
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd4
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd4
https://www.sciencedirect.com/science/article/pii/S259003742100008X#b4
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where , , ,a b c   and   are a few constant coefficients. These 

coefficients were calculated by the following Taylor series 

expansions of the terms in  (22) are used 

( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5 6 7

3 4 5 6 7 8

1

(1) (2)
,

2 3! 4! 5! 6! 7!
i i i i i i ii i

h h h h h h
f f h f f f f f O hf f
+
= + + + + + + + +  

( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5 6 7

3 4 5 6 7(1) (2) 8

1
,

2 3! 4! 5! 6! 7!
i i i i i i i i i

h h h h h h
f f hf f f f f f f O h
−
= − + − + − + − +  

( ) ( ) ( ) ( ) ( ) ( )
2 2 3 3 4 4 5 5 6 6 7 7

3 4 5 6 7(1) (2) 8

2

2 2 2 2 2 2
2 ,

2 3! 4! 5! 6! 7!
i i i i i i i i i

h h h h h h
f f hf f f f f f f O h
+
= + + + + + + + +  

( ) ( ) ( ) ( ) ( ) ( )
2 2 3 3 4 4 5 5 6 6 7 7

3 4 5 6 7 8

2

(1) (2)2 2 2 2 2 2
2 ,

2 3! 4! 5! 6! 7!
i i i i i i ii i

h h h h h h
f f h f f f f f O hf f
−
= − + − + − + − +  

( ) ( ) ( ) ( ) ( ) ( )
2 2 3 3 4 4 5 5 6 6 7 7

3 4 5 6 7 8

3

(1) (2)3 3 3 3 3 3
3 ,

2 3! 4! 5! 6! 7!
i i i i i i ii i

h h h h h h
f f hf f f f f f f O h
+
= + + + + + + + +  
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2 2 3 3 4 4 5 5 6 6 7 7

3 4 5 6 7 8

3

(1) (2)3 3 3 3 3 3
3 ,

2 3! 4! 5! 6! 7!
i i i i i i ii i

h h h h h h
f f h f f f f f O hf f
−
= − + − + − + − +  

( ) ( ) ( ) ( ) ( ) ( ) ( )
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( 52 7)
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1
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h h h h h
f hf f f f f f Of h
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= + + + + + + +  
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2
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Substituting above equations into(22) and rearranging gives 

( )
( )

( )
( )

( )

( )

( )
( )

( )

( )

( )
( )

( ) ( )

`
42 4`

2 4
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a b c f h f
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h f h f o h
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   

+ + − − − + + − − −

+ + − − − + + − − − + =

 
 
 

   
   
   

The following system of equations is created by setting the 

coefficients of the previously mentioned equation to zero. 

 

 

 

(24) 

Obviously, we can form different subsystems by extracting 

some or all of the equations from (24) which helps us to 

determine the values of , , ,a b c   and  . For instance, a 

system the first two equations together have five unknowns, 

which results in a three-parameter family with an unlimited 

number of solutions. On the other hand, taking into account 

the first three equations result in an undecided system that can 

be resolved by resolving two of the five unknowns. The 

remaining equations can be used to create two further systems. 

Lele [26] claimed that by resolving systems by multiple CFDS 

of varying orders of accuracy may be created (24). In fact, we 

have the following: 

1. If , , ,a b c   and   satisfy the first equation of (24) only, 

then substituting these constants into formula (22) gives a 

compact scheme with second-order accuracy. 

2. If the first two equations of (24) are satisfied by 

, , ,a b c  and  , then a scheme with fourth-order accuracy is 

obtained. 

3. If , , ,a b c  and   satisfy the first three equations of (24), 

then the compact scheme obtained by replacing these 

constants into  (22) is of order six. 

If you keep doing this, you may get CFDSs with an 

accuracy of up to tenths of an order. It is encouraging to note 

that the accuracy of the resulting CFDS increases by two 

orders of magnitude every time a new equation is introduced 

to the preceding system [26].  

IV. NUMERICAL EXPERIMENTS 

We perform numerical tests and comparisons to evaluate 

the calculated accuracy attained by the compact and central 

schemes. Partial differential equations, such as the Poisson 

and Laplace equations, have numerous applications in a 

variety of disciplines, including computational fluid dynamics, 

structural mechanics, theoretical physics, etc. 

( , ) ( , ),u x y f x y x =   (25) 

where  is a two-dimensional rectangular domain with 

Dirichlet boundary conditions defined as 

0, ( , )
u

u x y
n


= = 


, and   is the Laplacian operator. 

When ( , ) 0f x y = , (25) becomes the Laplace equation. 

The Poisson equation is frequently used to describe 

equilibrium phenomena for a wide range of variables, 

including pressure, water surface elevation, temperature, and 

concentration [8]. The numerical solution of the Poisson 

equation is crucial for the computational simulation of the 

corresponding applied problems. In the last several decades, a 

lot of work has been put into creating numerical algorithms 

that solve the Poisson equation accurately. 

Example 4.1: Defined Laplace equations by two diminutions 

with the Dirichlet boundary conditions as the following [27]  

0 , 0 1, 0 1xx yyf f x y+ =      

( ) ( ) ( ) ( )2 2,0 , ,1 2 ,
x xf x e f x e cos

− −= =  

( ) ( ) ( ) ( )20, 2 , 1, 2 .f y cos y f y e cos y−= =  

Now, we swear the region R for a finite number of 

rectangular elements. we choose of step lengths  in x-

axis and  in y-axis. The exact solution of the above 

problem on the region is  

https://www.sciencedirect.com/topics/mathematics/taylor-series-expansion
https://www.sciencedirect.com/topics/mathematics/taylor-series-expansion
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd5
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd5
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd7
https://www.sciencedirect.com/science/article/pii/S259003742100008X#fd5
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Fig.1. Boundary conditions in the region R 

 

This Problem of Laplace Equation problem is solved by 

using the finite difference method by two different operators 

(five and nine) points and assuming step lengths  

Then: 

, 1, 1, , 1 , 1

1

4
i j i j i j i j i j

u u u u u
− + − +

= + + +    

This is equation called Standard Five Points Equation 

(SFPE) 

And 

( )1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1,
4

1

20
i j i j i j i j i j i j i j i ji j

u u u u u u u uu
− + − + + + + − − + − −
+ + + + + + +=   

This is equation called Nine Points Equation (NPE) 

 
Fig. 2. Standard Five Points 

 

 
Fig.3. Nine Points 

 

Table 4. Comparison of error between the (five and nine) points finite 

difference method on Example 4.1 

Nodes 

Interior 

Finite Difference Method 
Exact Solution 

Five points Nine points 

7 0.1972 0.1958 0.1958 

8 0.3252 0.3228 0.3228 

9 0.5348 0.5323 0.5322 

12 0.3200 0.3277 0.3277 

13 0.2010 0.1987 0.1987 

14 0.1220 0.1206 0.1205 

17 0.0164 0.0158 0.0157 

18 0.0271 0.0260 0.0260 

19 0.0438 0.0429 0.0429 

 
Fig.4. Comparison Between the results. 

 

From the table 4, the Finite difference method by the 

operator (nine point) more accurate to the exact solution. 

Example 4.2: A 2D Poisson equation with homogeneous 

Dirichlet boundary conditions DBCs is shown below. 

( ) ( ) ( )2
2 , 0 2, 0 4,fxx fyy sin x sin y x y  − + =    

( ) ( ),0 0, , 4 0,f x f x= =  

( ) ( )0, 0, 2, 0.f y f y= =  

The exact solution of the above problem on the region 

[02]×[04] is  The problem is 

solved by applying fourth-order CFDS and six-order CFDS 

methods and assuming M = N. 

 
Fig.5. Plot of Solution the proposed fourth-order method 

 

Fig.6. Plot of Solution the proposed sixth-order method 
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Table 5. Comparison of error between the proposed sixth-order CFDS and a 
current fourth-order CFDS on Example 4.2 

M=N 
Error 

Fourth-order Six-order 

32 8.77e-06 2.47e-08 

64 5.48e-07 3.86e-10 

128 3.42e-08 6.04e-12 

256 2.14e-09 4.48e-13 

512 1.34e-10 4.40e-13 

1024 8.30e-12 4.39e-13 

 

 
Fig.7. Plot of Error the proposed fourth-order method 

 

 
Fig.8. Plot of Error the proposed sixth-order method 

 

The number of grid points is increased in this example as 

well, which results in a decrease in error, ensuring the stability 

of the six-order technique. Table 5 further demonstrates that 

the six-order strategy outperforms a fourth-order scheme 

currently in use. [26] 

V. CONCLUSION  

With the use of Taylor series expansions, we presented 

forward, backward, and centered difference approximations of 

first and higher derivatives in this study. Then, using 

constrained grid sizes, we computed more precise solutions 

using high-order compact finite difference techniques. In order 

to derive finite difference approximations for high-order 

derivatives in the truncation error, the high-order compact 

method operates on differential equations as an auxiliary 

relation. Finally, by solving the two-dimensional Poisson 

equation in a rectangular domain and contrasting the outcomes 

of the conventional technique with fourth order compact finite 

difference, we demonstrated the effectiveness of CFD. 
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