
International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

97

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

Implementation Drunkard’s Walk Algorithm to

Generate Random Level in Roguelike Games

Andy Koesnaedi1, Wirawan Istiono2

 1,2Informatic, Universitas Multimedia Nusantara, Tangerang, Banten, Indonesia

Email address: andy.koesnadi@gmail.com, wirawan.istiono@umn.ac.id

Abstract— Video games are no stranger to us listening to. Video

games are one of the rapidly growing entertainment industries. Video

Games content request are always evolving but making video games

is not easy and also resource-consuming. One way to prevent this

problem is by using Procedural Content Generation or known as

PCG. By using PCG, the replaybility of level in a video game

increase. The algorithm used in the application of this PCG is

Drunkard’s Walk. Level is generated randomly by using this

algorithm. This study aims to design and build a video game with

roguelike genre using the Drunkard’s Walk algorithm, which was

created with using Unity game engine. After finishing building the

game, then player satisfaction level is measured by using GUESS or

Guest User Satisfaction Scale. By using GUESS as a measuring tool,

35 respondents successfully obtained. From 35 respondents, the

value obtained using GUESS as a benchmark is 84.58% which is very

good.

Keywords— Drunkard’s Walk, Guest User Satisfaction Scale,

Procedural Content Generation, Video game.

I. INTRODUCTION

The content from video games is an important factor why

video games as mentioned continue to be played every day.

However, the demand for new content continues to grow and

to produce new content is already expensive and unmeasured.

Lots of video games are fun to play for the first time, but if the

video game has a fixed problem solving and, in some skill,

levels only have one same playthrough, just one finished

playthrough will take away the attraction of playing that video

games [1], [2]. One way to prevent the loss of attraction is by

creating content that has replaybility characteristic that aim for

each playthrough will always be different from the previous

one, and to create this method will be use Procedural Content

Generation method.

Roguelike game based on 2 games which are dungeon

questing games, namely Rogue in 1980 and Moria in 1983.

Procedural Content Generation has been used in these two

games, which have become the basic concept of roguelikes to

this day [3]. Roguelikes have levels that have several rooms,

of varying sizes and shapes, connected by corridors until each

room or corridor has been positioned. This room contains by

variety of monsters, treasures, weapons and traps [4].

Procedural Content Generation is one of the factors in

making roguelike games. By using Procedural Content

Generation [5], [6], then Algorithms such as level building and

monster laying will be carried out automatic. Drunkard's Walk

is one of the simplest generators available that will generate a

level like a cave [7]. This algorithm works by walking

randomly to make a pattern like a drunk person.

Cellular Automata is one of the generators that a cell will

determine the number of cells that will live from the

surrounding cells [8]. If cell that live too much or too little, the

cell will then die [9]. The disadvantage of the Cellular

Automata algorithm is that if it is in the process, generation

there are many walls [10], then the playable space for players

will be small. And, if Cellular Automata does multiple

generations [11], the number of rooms and corridors will also

decrease, but the size of the corridors will be consistent and

the size of the room will get bigger [12]. Meanwhile, in the

Drunkard's walk algorithm generation, the more generations,

and the more generated playable space of the room. Moreover,

more generations will increase the size of the corridor, but the

size of the room will remain the same [13]. The reason this

game uses the Drunkard's Walk algorithm is because the

Drunkard's Walk algorithm will produce a map that will

merge and have a start and finish, while the Cellular Automata

algorithm will generate a map that is difficult to generate a

map that has a room that has relationship [14].

Based on the introduction above, the design and

development of a roguelike themed game will use the

Drunkard's Walk algorithm, which will result in Procedural

Content Generation. This algorithm will make connections

between rooms that will be generated by the algorithm. After

completing the game, the author will distribute the game to

players who like roguelike genre games. After spreading in the

game that will be designed and created, these players will be

asked to fill out a questionnaire using Game User Experience

Satisfaction (GUESS) to measure player satisfaction.

II. LITERATURE STUDY

A. Roguelike

The beginning of Roguelike originated from a game called

Rogue in 1980. Rogue is a game with a turn-based dungeon

crawler genre, where the player must pass through several

dungeons, retrieve items that are exist, and defeat the

monsters. Rogue is designed using simple ASCII graphics to

generate enemies and rooms [4].

Fig. 1. Rogue game screen

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

98

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

Figure 1 shown a Rogue game screen made in 1980. This

game using Procedural Content Generation which was one of

the initial concept’s roguelike games. Rogue is made with a

design that uses ASCII as a visual [4].

Fig. 2. Moria game screen

Figure 2 shown a Moria game screen created in 1983. This

game is also using Procedural Content Generation and also

become one of the concepts early roguelike games [4], [15].

B. Procedural Content Generation

Procedural Content Generation is a media generator that

works automatically. Media that produce textures, sound

effects, maps, levels, characters, quests, and also the

mechanics of the game [16]. Game content that can be

generated can be divided into 6 parts, namely:

• Game Bits, that is the basic unit in a game content. game

bits needed in the game, such as the texture that

distinguishes the main character and enemies, or like

background music, but game bits don't interact directly

with players. Examples of game bits are textures, sounds,

effects textures (fire, water, wind), and others.

• Game Space, which is an environment in which the game

takes place, including maps and terrain.

• Game Systems, which simulate more complex

environments, such as ecosystems, road networks, urban

environments.

• Game Scenarios, set the previous level so that it becomes

coherent or be a sequence of events. Game Scenarios

includes puzzles, stories and levels.

• Game Design, namely a rule and mechanism contained in

the game.

• Derived Content, can be created which is useful as a

companion in games. Examples of derived content are

leaderboard and flavor text which will be useful to help

players.

From the game content described above, the Procedural

Content Generation method is classified into 3, namely [14],

[17]:

1. Traditional Methods are pseudo-random number

generators which were used by the very first commercial

video games and have been generally used for dungeon

and labyrinth generation. The first advantage of using this

method is that it is simple and fast. An example of using

traditional methods is to generate fractals and noise that

can create vegetation.

2. Search Based Methods perform content generation and

then evaluate it. Usually, this method is divided into

components, namely space representation, reachability

evaluation, and search algorithm.

3. Machine Learning is used to classify or predict existing

problems.

C. Drunkard’s Walk

Drunkard's Walk or what can also be called random walk

is the most basic rhythm algorithm used to generate levels like

caves. Drunkard's walk algorithm works by choosing a

random point and move randomly [18]. This path is repeated

until it reaches the desired level.

Formula above is a random walk formula. Sn is the

number of steps the random moving path of Xi's steps, then Sn

will form a path from number of steps Xi [17].

Formula above is still a random walk formula. is

existence the current location is based on the value of t, and

 is a step or random variable with the distribution value.

III. METHODOLOGY

A. Research Methodology

The research methodology that will be used in the

development of this game, first step is study literature, where

in this stage, research is done before starting the design of this

game made. The research sought is in the form of designing a

roguelike game using Procedural Content Generation with the

Drunkard's Walk algorithm and GUESS-18. And the second

step is Designing Game, where in this stage the author will

design a Game Design Document, which aims to describe the

details of the game to be designed. The third step is creating

game, where In making this game, it will be made with the

Unity game engine 2020.3.26f1. and Visual Studio Code 2019

which acts as an IDE using the C# programming language. For

the operating system, Windows 10 will be used. The forth step

is testing application, where in testing will be done after game

development is complete. Testing will be carried out with a

minimum of 30 players, and player satisfaction will be

measured using GUESS-18. The next step is evaluation, after

the development and testing stages are completed, the

available data will be collected, and a conclusion will be

drawn on the level of player satisfaction of the games that

have been designed. And the last step is documentation, where

the form of documentation that will be carried out is in the

form of screenshots or important notes.

B. Game Design

The game that will be built is named Monster Cave. The

design of this game will be shown using flowchart. Figure 3 is

a flowchart of the main menu. When the player starts game,

players will see the splash screen first before heading to main

menu. When in the main menu, players can choose the new

option games, credits, and exits. If the player selects new

game, the game will display the story first, and after the story

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

99

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

is displayed, the player can choose to play right away or see

how to play first. If the player selects credits, the player can

see the credits page will display the assets used in this game.

And if the player chooses exit, then the game will close itself.

Fig. 3. Flowchart Main Menu

Fig. 4. Flowchart Gameplay

Figure 4 shown a gameplay flowchart. Before the game

starts, the game will check what level to run. If the level will

run is level 3 or level 6, then the shop will appear. If the

executed level is neither level 3 nor level 6, then the level will

be generated.

After the level has been generated, the game manager will

run and look for players. Game manager will load information

in the form of players HP, player experience, and money

earned when playing. After the information has been loaded,

the camera will look for the whereabouts of the player and will

continue to follow him. The HUD will also be displayed,

which will display the HP, experience, and money earned.

In Figure 4 also shown, the game will check the player's

HP, if the player's HP reaches 0 then the game over display

will come out, and players will be redirected to the main

menu. Players can replenish HP by getting health potion that is

dropped if you kill an enemy or player can buy it in a shop,

which will fill 20 HP. Players will gain experience if enemies

are killed or player can buy experience in the shop.

If the player's experience has not reached 10, the player's

damage begins of 1 and HP of 100. If the player's experience

reaches 10, then the damage will be increased to 4 and the HP

will be 120. If the experience the player reaches 30, then the

damage will be increased to 8 and HP becomes 140. If the

player's experience reaches 65, the damage will be increased

to 12 and the HP will be 165. If the player's experience

reaches 100, the damage will be increased to 16 and the HP

will be 200.

To go to the next level, the player must kill at least 3

enemies first to go to the next level. If players directly walk to

the exit, players cannot go to the level next and the game will

show that the player must kill at least 3 enemies first. If the

player has killed 3 enemies and the player walks to the exit,

then the next level will be generated.

Fig. 5. Flowchart Level Generator

Figure 5 shown a flowchart level generation, which

explains how the drunkard's walk algorithm works to create a

map for this game at random. First a room hash set will be

created and will define the initial position for the walker. After

that the walker will run automatically random which will then

be stored in the hash set.

After completing the measurements, the room hash set that

has been collected by this walker will then be used as the floor

as an area play player. After the floor has been made, the

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

100

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

walker will walk make another room. After finishing making

some rooms, then the rooms that are made will be connected

using the corridor.

After the room and corridor are finished, the walls will

made around the room and corridor. If in the room there is the

hole in the floor, then the hole will be filled with walls. After

the wall is completed, the player will be shown to the first

room created. After that the enemy will appear in a room other

than the player's room. After the enemy has appeared then the

chest and an exit will appear. After that the camera will look

for where the player is and will follow the player.

Fig. 6. Flowchart Player

Figure 6 shown flowchart player, where the game will

keep checking whether the player has HP or not. The game

will continue if the player still has HP, and the game will be

over if the HP the player has reached 0. The player has several

inputs, for moving player can enter keyboard input in the form

of w, a, s, and d. To perform an attack the player can enter the

input left mouse on the mouse. To activate the skill that is to

make the player cannot receive attacks, players can enter

keyboard input in the form of space. To display the pause

menu, players can enter the keyboard input in the form of

escape. The player can exit the game if the player selects the

quit button, and the player can continue the game if the player

selects the resume button.

Figure 7 shown flowchart of the enemy where the game

will give HP and damage to the enemy and will continue to

check whether the enemy's HP has reached 0 or not. If the

enemy's HP reaches 0, then the enemy will be eliminated, and

if the enemy still has HP, then the enemy will stay in the

game. The enemy will continue to look for players around

radius, and if the player is already in the enemy's radius, then

the enemy will chase the players. If the enemy is already

within the attack radius, then the enemy will attack the player.

If the player manages to escape from the enemy, the enemy

will return to their original position.

To implementation drunkard’s walk algorithm in this

game, first step is preparing some global variable that can be

catch by other script, to set variable global in this case, will be

use playerPref method that can be seen in sample code in

Figure 8.

Fig. 7. Flowchart Enemy

Fig. 8. Playerprefs Implementation

Figure 8 shown a code snippet that uses Playerprefs to

store player data when changing levels. Player data that will

be saved is the money collected, player experience that have

been collected, and the player's HP.

Fig. 9. Playerprefs Implementation

Figure 9 shown a code snippet that uses Playerprefs to load

player data when starting a new level. Started by reading a key

named SaveState, which is then a collection of arrays string

will be parsed and loaded in each value.

Figure 10 shown a code snippet that shows the function of

levels. It can be seen if experience is below 10, then the

function is level 1 will be called. If experience is below 30,

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

101

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

then level 2 functions will be called, and so on. If experience

has reached 100, then level players reach the maximum and

can no longer get experience again.

Fig. 10. Player Level Implementation

Fig. 11. Drunkard’s Walk Algorithm

Fig. 12. Drunkard’s Walk Algorithm Snippet

Figure 11 shown a Drunkard's Walk code snippet. This

code will save the initial position. In the for function, the

newPosition variable will run randomly from its initial

position, which is called on the Direction2D function

contained in the code snippet that can be seen in Figure 12.

After newPosition has run, the position will be stored in the

path and will be save new position as starting position

Fig. 13. Snippet of Code Making Map

Figure 13 is a code snippet for creating a map. Floor

positions will retrieve position information from the

Drunkard’s Walk function implemented in Figure 11, and will

be combined to the floorPositions hash set. After that, the

information will be given to the Paint FloorTiles function

which is used to create floors and walls using tilemap.

Fig. 14. Snippet of Code Making Floor

Figure 14 is a code snippet for creating a floor.

Information floorpositions will be taken from the function in

figure 13, and then the tilePosition variable will retrieve the

position information and will be entered tilemap to the

position

Fig. 15. Snipper of Code Making Wall

Figure 15 shown a code snippet for creating walls. Newly

hash set created to prevent duplicates. To search the wall,

every position will be examined by the board of directors. If

the position being checked does not exist directors who have a

floor that is variable neighborPosition, then the position is the

wall and will be entered into a hash set named wall Positions.

These WallPositions will become walls.

IV. RESULT

From the methodology and code that has been applied to

the Unity engine application with C# code, the results can be

seen from Figure 17 to Figure 24.

Figure 16 shown the main menu that will appear after the

splash screen. In the main menu, players can start a new game,

view credits, or exit the game. Form main menu, the game will

show the story of this game when players choose the New

Game button, and also after the story shown, a tutorial how to

play this game will be shown. To go back to the main menu,

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

102

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

when player in gameplay screen or credits screen, players can

press the back button.

Fig. 16. Main Menu Screen

Fig. 17. Gameplay

Figure 17 shown sample of the gameplay that implements

Drunkard’s walk algorithm. Where the players can see HP,

experience, money, and pause button. Character’s HP will

decrease if hit by an attack from enemy and will increase if

character take a health potion.

Fig. 18. Shop screen

To make this game more interesting, beside adding

Drunkard’s walk algorithm, this game also adding shoping

menu that can be seen in Figure 18. The shop provides health

potions and experience items to buy by a player.

Figure 19 shown the credit screen, where the players can

see credits from this games. The credit contains the creator of

this game and the creator of the assets used in the making of

this game.

Fig. 19. Credits

After making a game, user acceptance testing is carried out

by GUESS method, the Questionnaire survey are given to

players who have played the game with Drunkard’s walk

algorithm, for measuring the level of player satisfaction. The

Questionnaire have 18 questions with seven grades of

assessment categories. Categories rated by GUESS are

Narratives, Play Engagement, Enjoyment, Creative Freedom,

Audio Aesthetic, Personal Gratification, Social Activity, and

Visual Aesthetic, but because this game is single-player and

has no sound, so the question is only 13 questions are

available. The questionnaire was filled out by 35 respondents

from various ages, from children, teenagers to adults, where

88.6% of respondents who filled out the questionnaire were

aged 20 to 30 years old, the respondent’s age can be seen in

Figure 20.

Fig. 20. Player Age Pie Chart

Figure 20 shown a pie chart of the age of players who have

played the game and fill out this questionnaire. 17-20 years

old has 1 player, and has total ratio is 2.9%. Age 20-30 has 31

players and has a total ratio of 88.6%. Ages over 30 have 3

players and have a total ratio by 8.6%. And the last one is

under 17%, which has no respondent. The following is the

calculation result from the GUESS evaluation.

After the average of each category is calculated, the

average value of each category can be calculated to get the

entire GUESS average as the value of player satisfaction

TABLE. 1. GUESS Average Result

GUESS subscale Average

Usability 88.1% (Very good)

Narratives 79.6% (Good)

Play Engrossment 78.6% (Good)

Enjoyment 85.7% (Very good)

Creative Freedom 83.7% (Good)

Gratification 91.45% (Very good)

Visual Aesthetic 84.9% (Very good)

Average Result 84.58% (Very good)

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

103

Andy Koesnaedi and Wirawan Istiono, “Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 5, Issue 2, pp. 97-103, 2022.

From the result that can be seen in Table 1, it can be

concluded that the average calculation of the category GUESS

got an average rating of 84.58%, that the game has done this is

very good based on the GUESS rating. The highest value is

obtained from the visual aesthetic category is 91.45%, while

the lowest value is obtained from the play engagement

category was 78.6%.

V. CONCLUSION

Based on the research that has been done, the game with

the roguelike genre using the Drunkard's Walk algorithm has

been successfully implemented in the design and development

of this game. This game is designed using the Unity game

engine. This game provides 6 levels where every 2 levels,

store level will be available. Drunkard's Walk algorithm is

applied to perform generation of levels that provide a different

experience. Based on the results of questionnaire that has been

filled out by 35 people with different ages, the results are

obtained using the GUESS assessment is 84.58%, which

results very good.

Based on the research that has been done, the following are

suggestions that can be given, first added difficulty system

which will increase the difficulty level of this roguelike game

that will add a variety of levels. Second, adding music and

sound effects to the game will add audio aesthetics. Third,

optimizing level creation to reduce resources to be used on the

computer. Forth, increasing the attractiveness of this game so

that GUESS's rating in the Play Engagement category

increases. Fifth, conduct research on the Drunkard's Walk

algorithm so that the implementation of the algorithm is

successful.

ACKNOWLEDGMENT

Thank you to the Universitas Multimedia Nusantara,

Indonesia which has become a place for researchers to develop

this journal research. Hopefully, this research can make a

major contribution to the advancement of technology in

Indonesia.

REFERENCES

[1] W. Istiono, “Leveling up difficulty model based on user experience in

education games mobile-based for student kindergartens,” IJNMT
(International Journal of New Media Technology), vol. 7, no. 1, pp. 18–

22, 2020, doi: 10.31937/ijnmt.v7i1.1666.

[2] L. Fernández-Núñez, D. Penas, J. Viteri, C. Gómez-Rodríguez, and J.
Vilares, “Developing Open-Source Roguelike Games for Visually-

Impaired Players by Using Low-Complexity NLP Techniques,” mdpi, p.

10, 2020, doi: 10.3390/proceedings2020054010.
[3] H. Goandy, “No Escape: A 2D Top-Down Shooting Roguelike Game

Embedded with Drunkard Walk Algorithm,” International Journal of

Advanced Trends in Computer Science and Engineering, vol. 9, no. 2,
pp. 1045–1049, 2020, doi: 10.30534/ijatcse/2020/22922020.

[4] M. R. Johnson, “The Use of ASCII Graphics in Roguelikes: Aesthetic

Nostalgia and Semiotic Difference,” Games and Culture, vol. 12, no. 2,
pp. 115–135, 2017, doi: 10.1177/1555412015585884.

[5] D. Hooshyar, M. Yousefi, and H. Lim, “A Procedural Content

Generation-Based Framework for Educational Games: Toward a
Tailored Data-Driven Game for Developing Early English Reading

Skills,” Journal of Educational Computing Research, vol. 56, no. 2, pp.
293–310, 2018, doi: 10.1177/0735633117706909.

[6] J. Togelius et al., “Procedural Content Generation : Goals, Challenges

and Actionable Steps,” Artificial and Computational Intelligence in
Games, vol. 6, no. July, pp. 61–75, 2013, [Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2013/4351%5Cnhttp://drops.dags

tuhl.de/opus/volltexte/2013/4336/
[7] I. G. N. Taksu Wijaya, S. Hansun, and M. Bonar Kristanda, “DISDAIN:

An Auto Content Generation VR Game,” Indian Journal of Science and

Technology, vol. 12, no. 7, pp. 1–7, 2019, doi:
10.17485/ijst/2019/v12i7/141370.

[8] J. Huang and Y. Peng, “Simulation of Life Game Based on Cellular

Automata,” Journal of Computer and Communications, vol. 09, no. 01,
pp. 44–58, 2021, doi: 10.4236/jcc.2021.91005.

[9] K. Vayadande, R. Pokarne, M. Phaldesai, T. Bhuruk, T. Patil, and P.

Kumar, “Simulation of Conway’S Game of Life Using Cellular
Automata,” International Research Journal of Engineering and

Technology, pp. 327–331, 2022, [Online]. Available: www.irjet.net

[10] R. Dogaru and L. O. Chua, “Mutations of the ‘game of life’: A
generalized cellular automata perspective of complex adaptive systems,”

International Journal of Bifurcation and Chaos in Applied Sciences and

Engineering, vol. 10, no. 8, pp. 1821–1866, 2000, doi:
10.1142/S0218127400001201.

[11] G. Oxman, S. Weiss, and Y. Be’ery, “Computational methods for

Conway’s Game of Life cellular automaton,” Journal of Computational
Science, vol. 5, no. 1, pp. 24–31, 2014, doi: 10.1016/j.jocs.2013.07.005.

[12] A. Dhatsuwan and M. Precharattana, “BLOCKYLAND: A Cellular

Automata-Based Game to Enhance Logical Thinking,” Simulation and
Gaming, vol. 47, no. 4, pp. 445–464, 2016, doi:

10.1177/1046878116643468.

[13] P. Mouncey, L. Mlodinow, A. Lane, and P. Mouncey, “Book Review:
The Drunkard’s Walk – how Randomness Rules Our Lives,”

International Journal of Market Research, vol. 51, no. 5, pp. 707–708,

2009, doi: 10.2501/s147078530920089x.
[14] B. M. F. Viana and S. R. Dos Santos, “Procedural Dungeon Generation:

A Survey,” Journal on Interactive Systems, vol. 12, no. 1, pp. 83–101,

2021, doi: 10.5753/jis.2021.999.
[15] N. A. Barriga, “A Short Introduction to Procedural Content Generation

Algorithms for Videogames,” International Journal on Artificial

Intelligence Tools, vol. 28, no. 2, pp. 1–11, 2019, doi:
10.1142/S0218213019300011.

[16] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Transactions on
Multimedia Computing, Communications and Applications, vol. 9, no. 1,

2013, doi: 10.1145/2422956.2422957.

[17] B. M. F. Viana and S. R. Dos Santos, “A Survey of Procedural Dungeon
Generation,” Brazilian Symposium on Games and Digital Entertainment,

SBGAMES, vol. 2019-Octob, pp. 29–38, 2019, doi:

10.1109/SBGames.2019.00015.
[18] G. Ehrhardt, “The not-so-random Drunkard’s walk,” Journal of

Statistics Education, vol. 21, no. 2, 2013, doi:
10.1080/10691898.2013.11889679.

