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Abstract— This research deals with the derivation of an improved two-third step hybrid-block approach for the numerical integration of stiff 

first-order ordinary differential equations with initial values. The method derived from the collocation and interpolation of the basis function 

(power series) gives rise to a continuous implicit method.  The estimation approach at the off-grid points gives rise to the continuous implicit 

linear multistep method. The evaluation of the continuous method at various points yields the block method. We investigated the following basic 

features: the order and error constant, zero stability, consistency, and convergence of the block method to test its efficiency. The new block 

method was used to solve some stiff problems to generate more efficient results when matched with some existing authors solving the same stiff 

first-order problems. Thus, the method can be used as an effective tool to solve first-order stiff problems. 

 

Keywords— Differential Equations, Stiff problems, Implicit Hybrid Method, Interpolation and Collocation. 

I. INTRODUCTION  

Differential equations are important mathematical tools used to produce models for the physical phenomenon. Most often, 

differential equations may not have an analytical solution. A numerical method is a good tool that assists to proffer solutions to 

problems that are impossible or very difficult to solve in analytical ways (Hurol, 2013). In this work, we consider a First-order 

Ordinary Differential Equation with initial values is of the form 

( ),y f x y =  ( )0 0,y x =    ,x a b  (1) 

The solution is in the range where and is finite and is a continuously differentiable function within an interval satisfying (1). 

Many authors in the literature have developed numerical methods such as Euler’s Method, Runge-Kutta method, and Predictor-

Corrector methods to solve the problem (1) to serve as solutions to differential equations. Other approaches recently used for 

solving the above problem consist of the Block formulation and Taylor series technique (Koroche, 2021; Nurujjaman, 2020; 

Ukpebor & Omole, 2020; Olanegan & Aladesote, 2020; Raymond et al., 2018; Ramos, 2017; Abdulaziz et al., 2017; Olanegan et 

al., 2015; Hurol, 2013). 

Euler’s method is the simplest and the most fundamental numerical method for solving first-order initial value problem. It is 

one of the earliest and basic methods. It provides the approximation for the solution of a differential equation (Hurol, 2013). Also, 

Runge-Kutta and multistep methods are well-known methods that have being used largely for solving (1). The Runge-Kutta 

method is self-starting and easy to program but may require subroutines to handle systems of ordinary differential equations 

(Ramos, 2017). 

Thus, the predictor-corrector methods have greater accuracy and the error-estimating ability. However, when predictor-

corrector methods are used, Runge-Kutta methods still find application in starting the computation with interval changing in the 

interval of integration. Despite the breakthroughs in the methods, these methods still require lots of time to write subroutines, 

slow rate of convergence, instability, low accuracy (Koroche, 2021).  Hence, the need for the formulation of the Block method, 

the block formulation has the benefit of being self- starting, more efficient in terms of cost implementation, time of execution and 

accuracy, and were developed to take care of the noticed difficulties of predictor-corrector methods (Ramos, 2017). 

Collocation is a projection method for solving integral and differential equations in which the approximate solution is 

determined from the condition that the equation must be stratified at given points. It involves the determination of an approximate 

solution in a set of functions called the basis function.  Therefore, our interest in this paper is to present an efficient block method 

through collocation that retains the traditional advantage of Runge-Kutta of being self-starting and efficient in implementation. 

II. METHOD 

Consider the power series approximation as follows: 

0

k
n

n

n

y a x
=

=  (2) 
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where 
2

3
k =  

The first derivative of (2) produces: 

1

0

k
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y na x −

=

 =  (3) 

Interpolating (2) at 
1

,
3

nx x  += =  and collocating (3) at 
1 2 1 4 5 2

, 0, , , , , ,
9 9 3 9 9 3

nx x  += =  respectively. 
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(4)

 

Finding the unknown , 0(1)7ja j =  in equation (4) via Gaussian elimination procedures which are then filled into equation (2) 

to produce implicit continuous scheme in equation (5)  

( ) ( ) ( ) ( )1 1 0

03 3

v n v n
n

v

y t t y h t f t f


  +
+

=

 
= + + 

 


 (5)

 

for 
1 2 1 4 5 2

, , , , ,
9 9 3 9 9 3

v =  as the hybrid points.  

Now, using the transformation 

 ,nx x
t

h

−
=

1dt

dx h
=    (6) 

The coefficients of n jy +  and n jf +  are obtained in terms of t  to be the continuous method for equation (6) as follows: 
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Evaluating the continuous scheme at the non-interpolation points produces the discrete scheme as follows: 
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Combining the discrete schemes in matrix form, by using matrix inversion, the methods produce a block method as follow: 
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Basic Properties of the Method  

The analysis of the basic properties of the block are investigated as follows: 

Order and Local Truncation Error  

We define the Local Truncation Error (LTE) with equation (14) above as: 
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0

:
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 = +      

where, ( )y x is an arbitrary function, continuously differentiable on  , .a b  This is expanded by Taylor series point x  to obtain 
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where ( ) ( )1 1 1

1 0p p p

p nC h y x h+ + +

+ + is the Local Truncation Error (LTE) at the point nx . Hence, equation (14) is of uniform 

order  7 7 7 7 7
T

 and Local Truncation Error of  
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T
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Zero Stability of the Block 

Definition: A Block method is said to be zero-stable, if no root of the first characteristics polynomials ( )r has modulus 

greater than one and if every root of modulus one has multiplicity not greater than two. Thus, equation (14) is zero stable since no 

root of the first characteristics polynomial ( )r has modulus greater than one that is 1r  (Olanegan et al., 2015). 

Consistency

 A block method is said to be consistent if it has order 1p  . Therefore, the block is consistent, since 7p =  

Convergence of the Method 

A linear multistep method is said to be convergent if it is consistent and zero stable. Thus, the method converges since it 

satisfies this condition, (Olanegan et al., 2015). 

Numerical Experiments and Results 

This section presented some experiments carried out with the new method to solve some stiff first-order differential equations.  

The computational results presented in the table are compared with some existing methods in the literature. 

Experiment 1 

Consider the stiff first-order initial value problem: 

y x y = −  ( )0 1,y =  0.1h =  

Theoretical Solution: ( ) xy x e −=  

(Ukpebor and Omole 2020). 

Experiment 2 

,y y = −  ( )0 1,y =  0.1h =  

Theoretical Solution: ( ) xy x e−=  

(Ukpebor & Omole, 2020; Raymond et al., 2018) 

Experiment 3 

Consider the highly stiff first-order initial value problem: 

y y= −  ( )0 1, 10, 0.1y h= = =  

Theoretical Solution: ( ) xy x e −=   

(Ukpebor and Omole 2020; and Raymond, et al., 2018) 

Numerical Results and Comparison  

Note: The following notations are used for representation in the tables below: 

EMUG - Error in (Ugbebor & Omole, 2020) 

EMRD - Error in (Raymond et al., 2018) 

 
TABLE 1: Results and Comparison for Experiment 1 

x Exact Solution Numerical Solution Error EMUG 

0.1 1.009896156377111400 1.009896156376720800 3.905765E-13 3.00E-11 

0.2 1.010156599225359200 1.010156599224959500 3.996803E-13 2.00E-11 

0.3 1.010417043451421000 1.010417043450990500 4.305445E-13 1.90E-10 

0.4 1.010677489090640300 1.010677489090141500 4.987122E-13 1.30E-10 

0.5 1.010937936178362100 1.010937936177746200 6.159517E-13 1.00E-10 

0.6 1.011198384749932600 1.011198384749315600 6.170620E-13 2.00E-10 

0.7 1.011458834840698500 1.011458834840079300 6.192824E-13 2.00E-10 

0.8 1.011719286486008700 1.011719286485377000 6.317169E-13 2.00E-10 

0.9 1.011979739721212900 1.011979739720540100 6.727952E-13 2.00E-10 

1.0 1.012240194581662100 1.012240194580898500 7.636114E-13 3.00E-10 
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TABLE 2: Results and Comparison for Experiment 2 

x Exact Solution Numerical Solution Error EMUG EMRD 

0.1 -0.105170918075647710 -0.105170917141109390 9.345383E-10 1.00E-10 1.95E-11 

0.2 -0.110710610355705170 -0.110710609258201450 1.097504E-09 0.00000 2.47E-09 

0.3 -0.107937301909804660 -0.107937300893886810 1.015918E-09 0.00000 4.18E-08 

0.4 -0.106553245497890580 -0.106553244522687970 9.752026E-10 0.00000 3.09E-07 

0.5 -0.109323089473978510 -0.109323088417293890 1.056685E-09 1.00E-10 1.45E-06 

0.6 -0.112099866722986660 -0.112099865584609090 1.138378E-09 1.00E-10 1.31E-06 

0.7 -0.117674290502672860 -0.117674289178823550 1.323849E-09 0.00000 1.19E-06 

0.8 -0.114883594599782150 -0.114883593368785900 1.230996E-09 1.00E-10 1.10E-06 

0.9 -0.113490860746536140 -0.113490859561878250 1.184658E-09 2.00E-10 1.16E-06 

1.0 -0.116278070458871290 -0.116278069181478460 1.277393E-09 1.00E-10 1.76E-06 

 
TABLE 3: Results and Comparison for Experiment 3 

x Exact Solution Numerical Solution Error EMUG EMRD 

0.1 0.860371828030024540 0.860371884775198210 5.674517E-08 3.00E-11 1.95E-11 

0.2 0.859028546760510660 0.859028605490282480 5.872977E-08 2.00E-11 2.47-E09 

0.3 0.859699925035657950 0.859699983280735160 5.824508E-08 1.90E-10 4.18-E08 

0.4 0.860035810917315290 0.860035868565216190 5.764790E-08 1.30E-10 3.09-E07 

0.5 0.859364170333800530 0.859364228939572760 5.860577E-08 1.00E-10 1.45-E06 

0.6 0.858693054264576540 0.858693112810855470 5.854628E-08 2.00E-10 1.31-E06 

0.7 0.857352394030853730 0.857352454593685360 6.056283E-08 2.00E-10 1.19E-06 

0.8 0.858022462300026540 0.858022522370661790 6.007064E-08 2.00E-10 1.10E-06 

0.9 0.858357692794805780 0.858357752258595790 5.946379E-08 2.00E-10 1.16E-06 

1.0 0.857687362729086520 0.857687423166135330 6.043705E-08 3.00E-10 1.76E-06 

III. CONCLUSION 

This research has focused on the formulation, exploration, and execution of the Two-third step improved block approach for 

the numerical integration of stiff first-order differential equations. The method was found to satisfy some basic properties of a 

numerical method. The results are shown in Tables 1 to 3. The results, when compared to some existing works as demonstrated in 

the tables above, performed favorably. Therefore, the method is said to be trustworthy and proficient to solve the stiff problem of 

first-order Ordinary Differential Equations. 
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