
International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

46

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

Enhancing OS Memory Management Performance: A

Review

Nihad Ramadhan Omar
1
, Rezgar Hasan Saeed

2
, Jihan Abdulazeez Ahmed

3
,

Shilan Bashar Muhammad
4
, Zainab Salih Ageed

5
, Zryan Najat Rashid

6

1
IT Management, Dohuk Polytechnic University, Duhok-Iraq, nihadro@yahoo.com
2
Computer Science, Near East University, Cyprus, rezgarhasan1992@gmail.com

3
Computer science, University of Duhok, Duhok-Iraq, drjihanrasool@uod.ac
4
Mathmatic, University of Duhok, Duhok-Iraq, shilan.mohammed@uod.ac

5
Translation, Nawroz University, Duhok-Iraq, zainab.ageed@nawroz.edu.krd

6
Computer Network, Sulaimani Polytechnic University, Sulaimani-Iraq, zryan.rashid@spu.edu.iq

Abstract— Memory management refers to all methods used in

memory to store code and data, track use, and, where possible,

retrieve memory space. This means that the physical chips and a

logical address space are mapped through the memory map at a low

level. Application programs could be used in higher-level virtual

spaces with memory management unit (MMU) to create a contiguous

memory impression. This paper proposed a review on operating

system function and the rule of memory management unit in

providing different techniques for various process in operating

system. This paper shows the experiences of a group of researchers

in operating systems development in many deferent techniques.

Keywords— Memory management, operating system, DRAM.

I. INTRODUCTION

Applications have increased memory footprints, energy

consumption and demand for output quickly in the Big Data

and Cloud Computing age [1]. To meet these requirements,

memory capacity is crucial, latency of memory access is

reduced and energy efficiency of the memory improved [2].

During job performance, the bottleneck of a computer system

is seriously affected [3]. Due to the data-intensive

computational paradigm it has recently become more and

more popular for large database processing, it usually has

large data requirements in the memory subsystem of an

inheritance OS (operating system) kernel of ten devices as the

bottleneck of the system. As a matter of fact, the memory

subsystem depends for its processing on the slow block

storage of a device [4].

The DRAM power and bandwidth increases significantly

in large data centers, with energy and consumption by the

main memory systems [5]. Furthermore, the temporary

exchange space created by OS on the storage device for the

production of excessive, main memory pages tends to become

an execution engine [6]. The performance engine of big data

treatment was targeted mainly due to extensively accessing

slow I/O block storage devices [7]. Solutions were sought.

Significantly, all information in a system's main memory

(DRAM) is widely used for fast processing in memory

computation [2, 8]. Since modern computer systems are

increasingly packaging core components on the processor

chip, memory systems need to scale bandwidth proportional to

deliver data to all core components [9].

The pin count for the mainframe chip is unfortunately the

memory bandwidth dictated and this restricted memory

bandwidth is one of the system performance bottlenecks [10].

compression of data is a promising way to increase the

efficient memory system bandwidth. Prior compression work

aims to achieve both compression capacity and bandwidth, by

trying to fit the most pages in the main memory dependent on

data compressibility [11, 12].

As these designs can change the effective memory

capability during runtime, they require OS or hypervisor

support to handle the memory capacity that change

dynamically [13, 14]. Unfortunately, it means that memory

compression solutions are not viable without coordination of

the interface between both hardware vendors (for instance

Intel, AMD) and OS vendors (Microsoft, Linux etc.) or

limited solutions for systems that provide hardware and OS

from the same vendor [15, 16].

Main memory is a part of the main components for recent

computer systems, with a wider memory capability for various

applications for handling increasingly explosive data [17].

DRAM is commonly used for several decades as a main

memory, but due to physical restrictions, its mass and cost is

not expected to increase further [18]. Nonvolatile memory in

block storage devices, however, continues to grow due to

technological improvements such as, the NAND flash memory

and Intel® 3D Points memory used in SSDs [19]. Thus,

hybrid memory systems that routine block devices as DRAM

extensions, both in industry and in academia, are very popular

as they can set up high-performance, large capacities and low-

cost memories [20, 21].

II. FUNCTIONS OF OPERATING SYSTEM

A. Management of Process

Operating system support for process management,

process creation and removal. A mechanism for

synchronization and communication between processes is also

provided for process management [22]. The OS maintains the

processor's tracking and process status [23]. A traffic

controller is the software that does the job. It assigns the

processor to perform the task of the processor, if the processor

no longer needs a process [24].

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

47

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

B. Management of Memory

The main and secondary memory management is used for

memory management. The module for memory management

performs memory allocation and deallocation for the program

[25]. The OS does different storage management tasks, it

tracks the storage media of which memory part is being used

and which memory part is not being used [26]. At the time of

the process memory request, the operating system helps to

allocate the memory [27]. If the process no longer requires

memory, the memory will be deallocated [28]. The task of

memory allocation is done with the help of the operating

system in multi-programming [29].

C. Management of File

A directory is organized for fast or simple navigation and

easy-to-use file system. These directories are made up of

folders and other files [30]. It helps handle all file-related

tasks, such as storage, recovery, sharing, naming and

protection of files. It retains information tracking, location,

user status, etc [31].

D. Management of Device

OS is responsible for the allocation and deallocation of the

devices. It helps to monitor all devices [32]. The device

communication through their respective drivers is carried out

with the help of the operating system. It efficiently manages

the device[33].

E. Management Secondary Storage

 The secondary storage management is the responsibility

of OS. The system has different storage levels that include

primary, secondary and cache storage [34]. The instruction

and data set are stored in primary memory or cache memory to

reference the executed program [35].

F. Security

Security is the responsibility of the operating system,

which prevents unauthorized access and threats from the data

and information [36, 37].

G. Coordination between other software and user

The operating system co-ordinates other software and

users. The operating system OS manages assemblies,

translators, compilers and other software, as well as assigns

them for various computer system users .

H. Networking

Distributed systems are a series of processors that do not

share clock and memory hardware devices [38]. The processor

communicates with one another with the help of the network.

I. Job accounting

The system functions to keep track of times and resources

used by several jobs and users. Operating system provides a

job accounting function [25].

J. Error detecting aids

The OS also performs the detection of errors. It

continuously monitors or detects errors in the system and

prevents errors in the system.

Fig. 1. Operating System Functions

III. MEMORY MANAGEMENT PERFORMANCE

Memory management offers different processes and

threads for the allocation of memory and deallocation

techniques [39]. OS offers two common memory allocation

methods: static and dynamic . In static memory management

OS assigns memory to a system that cannot be modified over

time [40]. Dynamic management technology, however, offers

flexibility in memory acquisition in runtime [41]. Static

allocation cannot forecast the amount of memory needed,

particularly in real-time scenarios [42]. Something like this

can lead to over-supply of memory. If no allocation is made of

the assigned memory, a dynamic allocation memory leak may

result [23, 43]. Due to the size and costs of the devices, the

memory size of sensors is restricted [44]. Static storage

contains program code and dynamic storage contains runtime,

buffer and stack variables [45].

In the Service Node (SN) system, the Memory

Management System (MM) is controlled as distinct service or

as part of the runtime management system in the Computer

node memory assignment (CN) [25]. The following issues are

addressed:

 selecting the best appropriate memory base on the

allocated processing foundations.

 allowing synchronized, thread-safe memory allocation and

deallocation though preventing fragmentation.

 carry out virtual to physical addresses, and vice versa.

 Runtime optimization performance. Picking the best

appropriate memory In order to choose the best memory

modules, the memory manager takes into account the

following search criteria:

 The bandwidth between allocated processing elements and

memory module.

 Memory module and its latency.

 Data transfer directions (input data/output data).

 The available space on the module.

 The load on routing and ports. Current criteria are defined

according to the QoS requirements provided by the

runtime resource manager to the memory manager. In

addition, certain characteristics may change during

runtime, depending on the target architecture. Generally,

memory management systems are based on an algorithm

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

48

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

based on constantly updated data on the state of the

resources, taking running decisions aiming to achieve.

 Assign a memory unit buffer next to the processing unit

and release the memory units near unused processing units.

 leave free space to allocate high priority applications.

 The MMU performance is evaluated by various factors:

memory, partial addresses, strategies, dynamism, speed

versus fragmentation, location versus speed, fragmentation

versus location etc. [46].

Main memory management is essential. Two problems are

associated with complete system execution, with how much

memory and memory management are provided in the work

process [47]. The block should be distributed in a few

languages when the program is ended with a memory block.

The block is stamped unused in such conditions [48]. Space

within Java is 'made accessible' because it is not available

regularly [49]. This helps ensure that the Java waste product

range is cleaned up in this area. The unused memory of the

store can be verified.

The operator updates private information systems to reuse

potential assignment criteria, thus showing that the block

memory area is reused [50]. After transfer, the comparison

continues to show the block. The system can never reach the

point that is relocated [51]. The developer should make sure

the specific does not try to follow the old reference to the

block in the dealer in a word (such as C++) with unambiguous

storage locations without a range of garbage [52].

The free space in the memory can be separated by store

and delete memory operations in small components in the

computer storage system [53]. The storage is currently used

wastefully to reduce the limits and the framework

implementation [54, 55]. Fragmentation circumstances hang

on the system memory. Usually, memory space is gone.

Moreover, because of its small size and memory squares,

memory squares cannot be used. This is known as

fragmentation [56]. During the stacking and exchange process

there are numerous spaces left that are not able to stack a

different procedure given their dimensions [57].

The concept storage is accessible but due to the dynamic

allocation of special memory categories, its space is not

accurate to stack another procedure [58]. One way to delegate

small troughs is to make the memory allocation larger than the

memory specified. Data fragmentation happens as a result of

separating a series of memory into various non-neighboring

portions [59].

IV. LITERATURE REVIEW

The new edge computer device memory resources

management framework, TOMML, has been introduced by X

LI et al. [60]. The observation is based upon the thought that

the previously proposed MMBBT framework is not

appropriate for existing users, that different optimization

strategies cannot be integrated and that in various scenarios,

users cannot change the optimization goals. TOMML tracks

the microkernel's architectural patterns and uses all the

MMBTB advantages. Real experimental results on Android

systems show that the approach improves the efficiency of

allocation from 12 to 20%. Moreover, a plugin is also made in

edge computing to display the compatibility of the framed

interface in the DRAM self-refreshing power issue.

Experiments show, by using various mapping arrangements,

that bank idleness can be improved by 6 to 25 per cent.

Co-operative Memorial Expansion (COMEX) was

introduced by Srinuan et al. [2] to support disruption of fine

grain kernel memory in networked systems. COMEX was

developed and developed to dynamically expand its memory

size to hold expelled pages in any networked computer,

extending the OS kernel memory subsystem to accelerate

execution on any machine. COMEX uses page tables based on

Linux OS to control data transfer through low-latency RDMA

links between remote page frames (memory nodes) and local

page frames (in computer nodes). It achieves speeds with high

runs that dwarf the memory size of the host, by evading much

lighter disks like swap space (usually under a recent OS).

COMEX is a lightweight kernel-level project and utilizes

locality-aware kernel information, resulting in better kernel-

prefetching functionality. It is fully transparent to applications

and users for any commodity computing system connected to

the RDMA-enabled fabric. Such a design approach is

appropriate for any operating system that relies on page tables

for virtual address mapping.

Ravi Kiran et al. [61] introduced the dual dedup system to

enhance the read performance by eliminating unnecessary disk

data duplicates from the cache. The duplication data is also

deleted from the cache for increased storage efficiency. Dual-

dedup is a very lightweight system as duplicate pages are not

detected by themselves. The knowledge found by the disk

deduplication subsystem is instead intelligently used. Real

prototype system experiments show significant readability and

latency improvements. Dual-dedup, for example, increases

read output by 34 per cent with 25 percent duplication of data

for FIO benchmarks.

While the considerable background power reduction using

simple policies, further improved power efficiency would be

achieved with more sophisticated policies to estimate memory

use or reduce migration costs. OffDIMM with data-center

workloads. Off-DIMM is a DRAM software-based DRAM

PM based on online/off-line memory at OS levels. NS Kim et

al. [62] have been proposed for operation of Off-DIMM.

When an offline block is disconnected, a deep power down

status is set for the subarray group. In the OS address space of

a group or a DRAM subset the Off-DIMM maps a memory

block. These experimental results show that Off-DIMM

decreases background power by 24 percent on the basis of

current memory utilization online-offline without significant

overhead performance.

M Qureshi et al. [15] propose an easy design to achieve

bandwidth advantages in memory compression while

depending only on memory modules (NonECC), to make OS

support more convenient. And the design uses a new inline

mechanism for metadata, which allows the line to be

compressed to be scanned by a specific marker word,

eliminating the overhead access to metadata. Development of

a low cost location forecast (LLP) which defines the line's

position with 98 percent accuracy and a dynamic solution to

disable compression when the advantages of compression are

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

49

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

lower than overhead. These assessments show that PTMC

provides a robust (no workload) acceleration of up to 73

percent with total overhead storage of less than 300 bytes.

L. Lio et al. [34] and S. Yang et al. [63] introduced

Memos, A memory management framework that can list

memory resources hierarchically throughout the entire

memory hierarchy as well as cache, channels and main

memory that consist of simultaneous DRAM and NVM.

Memos can dynamically optimize memory hierarchy

placement of information in response to memory access

patterns, current resource use and memory medium features

through the newly developed Kernel-level Monitoring Module

that instances memory patterns through a combination of TLB

monitoring with page walks and page migration engine.

Channel scheduling is crucial in a hybrid DRAM-NVM

system (e.g., MCHA), as multiple channels connect different

memory types and offer different bandwidths. The overall

system performance is improved by mapping data with

appropriate memory kinds. Experimental results show that

Memos is able to achieve high memory usage, improving

system performance by approximately 20,0%, reducing the

memory consumption by 82,5%, and improving the NVM life

by up to 34X.

The gross-grain and fine grain delay models, along with

use of Linux kernel changes and multiple runtime features,

were implemented on a SoC-FPGA by Yu Omori et al. [64],

In addition, the program variances between two models are

evaluated by SPEC CPU programs. The fine grain model

shows that the time of the program is run depends on the

frequency of NVMM memory requests rather than on the

cache hit ratio. Parallel bank levels and row buffer access

points also affect memory access delays, and even when the

former has a longer write-latency for four out of fourteen

programs the fine grain model shows less runtime that ground

grain.

H. Jang et al. [38] proposed a network-on-chip architecture

that includes the MMU (NoC). By means of the approach

proposed, NoC offers MMU functionality without changing

processor design, making it easy for developers to leverage

existing ULP lightweight processors and construct integrated

systems that backing multi-processing. The design of

Embedded NoC (MMNoC) is a prototype platform with

MMNoC and dual RISC-V processors. The prototype platform

is synthesized with the 28nm FD-SOI technology FPGA and

Samsung to check the MMNoC's functionality and small

capacity, scope and power overhead.

V. COMPARISION AND DISCUSION

It is necessary to consider other researchers' efforts and

experiments in the same area of the project to be undertaken in

advance of any project and to move on from the point of

completion. Therefore, as shown in the Table 1, some

examples of the techniques used to improve maximum

memory management performance such as noted by

references [60], [64] and [38] in different key concepts like

thread – oriented memory management layer (TOMML),

nonvolatile main memory (NVMM) and memory management

network on chip (MMNoC) respectively in order to achieve

the maximum level of advantages. In other hand the rest

researcher presented deferent key concepts for deferent

approaches as shown in the table 1 from each references. The

reader can note that each researcher proposed an example for

memory management performance by using a deferent

technology to achieve and maximize the benefit from the

necessary goals.

TABLE I. Advantages of memory management

REF. APPROACHES KEY CONCEPTS ADVANTAGES

[60] MEMORY

MANAGEMENT

thread-oriented

memory

management
layer

(TOMML)

INHERITS ALL THE MMBTB

ADVANTAGES LIKE USING A

THREAD ON THE ANDROID

PLATFORM TO HELP OPTIMIZE

THE THREAD AND TAKE FULL

ADVANTAGE OF THE THREAD

BEHAVIORS

[2] NETWORKED

COMPUTING

SYSTEMS

COOPERATIVE

MEMORY

EXPANSION

(COMEX)

SUPPORT OF MEMORY

DISAGGREGATION FOR

EXECUTING DIVERSE

APPLICATIONS WITH LARGE

EXECUTION FOOTPRINTS

[61] PAGE CACHE

MANAGEMENT
DUAL

DEDUPLICATION-

AWARE

DISCLOSES TO A PAGE CACHE

THE REDUNDANCY

KNOWLEDGE DETECTED BY

THE DEDUPLICATION LEVEL

BLOCK LAYER, WHICH MAY

REMOVE CACHE REDUNDANCY

AND AVOID UNNECESSARY

READING REQUESTS

[62] POWER

MANAGEMENT

OFFDIMM DECREASES BACKGROUND

POWER BY UP TO 24%, WITH

LOW OVERHEAD

PERFORMANCE

[15] TRANSPARENT

MEMORY-

COMPRESSION

(TMC)

PRACTICAL AND

TRANSPARENT

MEMORY

COMPRESSION

(PTMC)

PROVIDES A ROBUST (NO

SLOWDOWN OF WORKLOAD)

SPEED UP OF UP TO 73

PERCENT AND CAN BE

EXECUTED WITH LESS THAN

300 BYTE OVERHEAD

STORAGE.

[34],

[63]

HYBRID

MEMORY

MANAGEMENT

MEMOS CAN BE DEPLOYED ON

SYSTEMS EQUIPPED WITH

FAST-SLOW MEMORIES

POTENTIALLY

[64] Memory

management

NONVOLATILE

MAIN MEMORY

(NVMM)

LARGER MEMORY POWER AND

LOWER POWER CONSUMPTION

ARE ACHIEVED COMPARED TO

TRADITIONAL DRAM-BASED

PRINCIPAL MEMORY BECAUSE

NVMM REQUIRES NO

COOLING PROCESSES

[38] MEMORY

MANAGEMENT

MEMORY

MANAGEMENT

NETWORK ON

CHIP (MMNOC)

IT ALLOWS EMBEDDED

HARDWARE TECHNOLOGISTS

TO BUILD A TARGET

PLATFORM TO ENABLE

MULTIPROCESSING OF

EXISTING LIGHTWEIGHT

PROCESSORS (WHICH

NORMALLY DON'T HAVE THE

MMU).

VI. CONCLUSION

The efficiency of several memory units has been identified

as fundamental elements for improving the performance and

scope for the application of computer technologies in memory

units in existing data centers. A fundamental part of all

systems is the memory management unit. Existing literary

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

50

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

works have found that Memory is continuously reserved,

evacuated, separated, reused and used by virtualization, and

space usage needs to be improved. The study also focuses on

various memory management strategies that can quickly set up

frames and apply them. This paper looks at many operates on

the MMU and the drawbacks. It clarifies every aspect of

resource management. Their management mechanisms include

process management, memory management, energy

management, communication and file management. These

approaches are further classified according to the formulations

of their problems. An overview of the underlying idea and its

advantages are discussed in each OS main approach.

REFERENCES

[1] Z. S. Ageed, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, Z. N. Rashid, A.
A. Salih, et al., "A survey of data mining implementation in smart city

applications," Qubahan Academic Journal, vol. 1, pp. 91-99, 2021.

[2] P. Srinuan, X. Yuan, and N.-F. Tzeng, "Cooperative memory expansion
via OS kernel support for networked computing systems," IEEE

Transactions on Parallel and Distributed Systems, vol. 31, pp. 2650-

2667, 2020.
[3] H. R. Abdulqadir, S. R. Zeebaree, H. M. Shukur, M. M. Sadeeq, B. W.

Salim, A. A. Salih, et al., "A study of moving from cloud computing to

fog computing," Qubahan Academic Journal, vol. 1, pp. 60-70, 2021.
[4] Z. S. Ageed, S. R. Zeebaree, M. A. Sadeeq, M. B. Abdulrazzaq, B. W.

Salim, A. A. Salih, et al., "A state of art survey for intelligent energy

monitoring systems," Asian Journal of Research in Computer Science,
pp. 46-61, 2021.

[5] B. T. Jijo, S. R. Zeebaree, R. R. Zebari, M. A. Sadeeq, A. B. Sallow, S.

Mohsin, et al., "A comprehensive survey of 5G mm-wave technology
design challenges," Asian Journal of Research in Computer Science, pp.

1-20, 2021.

[6] F. Q. Kareem, S. R. Zeebaree, H. I. Dino, M. A. Sadeeq, Z. N. Rashid,
D. A. Hasan, et al., "A survey of optical fiber communications:

challenges and processing time influences," Asian Journal of Research

in Computer Science, pp. 48-58, 2021.
[7] S. M. S. A. Abdullah, S. Y. A. Ameen, M. A. Sadeeq, and S. Zeebaree,

"Multimodal emotion recognition using deep learning," Journal of

Applied Science and Technology Trends, vol. 2, pp. 52-58, 2021.
[8] M. A. Sadeeq and S. Zeebaree, "Energy management for internet of

things via distributed systems," Journal of Applied Science and

Technology Trends, vol. 2, pp. 59-71, 2021.
[9] Z. S. Ageed, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, H. S. Yahia, M.

R. Mahmood, et al., "Comprehensive survey of big data mining

approaches in cloud systems," Qubahan Academic Journal, vol. 1, pp.
29-38, 2021.

[10] M. A. Omer, S. R. Zeebaree, M. A. Sadeeq, B. W. Salim, S. x Mohsin,

Z. N. Rashid, et al., "Efficiency of malware detection in android system:
A survey," Asian Journal of Research in Computer Science, pp. 59-69,

2021.

[11] J. Y. Hur, "Representing contiguity in page table for memory
management units," in 2017 IEEE 11th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2017, pp.

21-28.
[12] L. M. Abdulrahman, S. R. Zeebaree, S. F. Kak, M. A. Sadeeq, A.-Z.

Adel, B. W. Salim, et al., "A state of art for smart gateways issues and

modification," Asian Journal of Research in Computer Science, pp. 1-
13, 2021.

[13] I. M. Ibrahim, "Task scheduling algorithms in cloud computing: A
review," Turkish Journal of Computer and Mathematics Education

(TURCOMAT), vol. 12, pp. 1041-1053, 2021.

[14] N. Omar, A. Sengur, and S. G. S. Al-Ali, "Cascaded deep learning-based
efficient approach for license plate detection and recognition," Expert

Systems with Applications, vol. 149, p. 113280, 2020.

[15] V. Young, S. Kariyappa, and M. K. Qureshi, "Enabling transparent
memory-compression for commodity memory systems," in 2019 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), 2019, pp. 570-581.

[16] A. S. Abdulraheem, A. A. Salih, A. I. Abdulla, M. A. Sadeeq, N. O.

Salim, H. Abdullah, et al., "Home automation system based on IoT,"
2020.

[17] D. H. Maulud, S. R. Zeebaree, K. Jacksi, M. A. M. Sadeeq, and K. H.

Sharif, "State of art for semantic analysis of natural language
processing," Qubahan Academic Journal, vol. 1, pp. 21-28, 2021.

[18] A. A. Yazdeen, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, O. M. Ahmed,

and R. R. Zebari, "FPGA implementations for data encryption and
decryption via concurrent and parallel computation: A review,"

Qubahan Academic Journal, vol. 1, pp. 8-16, 2021.

[19] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S.
Sami, and R. R. Zebari, "IoT and Cloud computing issues, challenges

and opportunities: A review," Qubahan Academic Journal, vol. 1, pp. 1-

7, 2021.
[20] S. Imamura and E. Yoshida, "POSTER: AR-MMAP: Write Performance

Improvement of Memory-Mapped File," in 2019 28th International

Conference on Parallel Architectures and Compilation Techniques

(PACT), 2019, pp. 493-494.

[21] S. R. Zebari and N. O. Yaseen, "Effects of Parallel Processing

Implementation on Balanced Load-Division Depending on Distributed
Memory Systems," J. Univ. Anbar Pure Sci, vol. 5, pp. 50-56, 2011.

[22] M. A. Sulaiman, M. Sadeeq, A. S. Abdulraheem, and A. I. Abdulla,

"Analyzation Study for Gamification Examination Fields," Technol.
Rep. Kansai Univ, vol. 62, pp. 2319-2328, 2020.

[23] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W.

Kim, "A survey on resource management in IoT operating systems,"
IEEE Access, vol. 6, pp. 8459-8482, 2018.

[24] M. Sadeeq, A. I. Abdulla, A. S. Abdulraheem, and Z. S. Ageed, "Impact

of Electronic Commerce on Enterprise Business," Technol. Rep. Kansai
Univ, vol. 62, pp. 2365-2378, 2020.

[25] A. Pupykina and G. Agosta, "Survey of memory management

techniques for hpc and cloud computing," IEEE Access, vol. 7, pp.
167351-167373, 2019.

[26] Z. Ageed, M. R. Mahmood, M. Sadeeq, M. B. Abdulrazzaq, and H.
Dino, "Cloud computing resources impacts on heavy-load parallel

processing approaches," IOSR Journal of Computer Engineering (IOSR-

JCE), vol. 22, pp. 30-41, 2020.
[27] A. I. Abdulla, A. S. Abdulraheem, A. A. Salih, M. A. Sadeeq, A. J.

Ahmed, B. M. Ferzor, et al., "Internet of Things and Smart Home

Security," Technol. Rep. Kansai Univ, vol. 62, pp. 2465-2476, 2020.
[28] A. Sallow, S. Zeebaree, R. Zebari, M. Mahmood, M. Abdulrazzaq, and

M. Sadeeq, "Vaccine tracker," SMS reminder system: Design and

implementation, 2020.
[29] A. A. Salih, S. R. Zeebaree, A. S. Abdulraheem, R. R. Zebari, M. A.

Sadeeq, and O. M. Ahmed, "Evolution of Mobile Wireless

Communication to 5G Revolution," Technology Reports of Kansai
University, vol. 62, pp. 2139-2151, 2020.

[30] S. Giraddi, P. Kalwad, and S. Kanakareddi, "Teaching operating

systems–programming assignments approach," Journal of Engineering
Education Transformations, vol. 31, pp. 68-73, 2018.

[31] Z. S. Ageed, R. K. Ibrahim, and M. A. Sadeeq, "Unified Ontology

Implementation of Cloud Computing for Distributed Systems," Current
Journal of Applied Science and Technology, pp. 82-97, 2020.

[32] G. Aponso, "Effective memory management for mobile operating

systems," American Journal of Engineering Research (AJER), vol. 246,
2017.

[33] N. Omar, A. M. Abdulazeez, A. Sengur, and S. G. S. Al-Ali, "Fused

faster RCNNs for efficient detection of the license plates," Indonesian
Journal of Electrical Engineering and Computer Science, vol. 19, pp.

974-982, 2020.

[34] L. Liu, S. Yang, L. Peng, and X. Li, "Hierarchical hybrid memory
management in OS for tiered memory systems," IEEE Transactions on

Parallel and Distributed Systems, vol. 30, pp. 2223-2236, 2019.

[35] A. B. Sallow, M. Sadeeq, R. R. Zebari, M. B. Abdulrazzaq, M. R.
Mahmood, H. M. Shukur, et al., "An Investigation for Mobile Malware

Behavioral and Detection Techniques Based on Android Platform,"

IOSR Journal of Computer Engineering (IOSR-JCE), vol. 22, pp. 14-20.
[36] Y. B. Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M. Y. Aalsalem,

"Internet of Things (IoT) operating systems management: Opportunities,

challenges, and solution," ed: Multidisciplinary Digital Publishing

Institute, 2019.

[37] S. Zeebaree, S. Ameen, and M. Sadeeq, "Social media networks security

threats, risks and recommendation: A case study in the kurdistan

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

51

Nihad Ramadhan Omar, Rezgar Hasan Saeed, Jihan Abdulazeez Ahmed, Shilan Bashar Muhammad, Zainab Salih Ageed, and Zryan Najat

Rashid, “Enhancing OS Memory Management Performance: A Review,” International Journal of Multidisciplinary Research and

Publications (IJMRAP), Volume 3, Issue 12, pp. 46-51, 2021.

region," International Journal of Innovation, Creativity and Change,

vol. 13, pp. 349-365, 2020.
[38] H. Jang, K. Han, S. Lee, J.-J. Lee, and W. Lee, "MMNoC: Embedding

Memory Management Units into Network-on-Chip for Lightweight

Embedded Systems," IEEE Access, vol. 7, pp. 80011-80019, 2019.
[39] O. F. Mohammad, M. S. M. Rahim, S. R. M. Zeebaree, and F. Y.

Ahmed, "A survey and analysis of the image encryption methods,"

International Journal of Applied Engineering Research, vol. 12, pp.
13265-13280, 2017.

[40] S. R. Zeebaree, K. Jacksi, and R. R. Zebari, "Impact analysis of SYN

flood DDoS attack on HAProxy and NLB cluster-based web servers,"
Indones. J. Electr. Eng. Comput. Sci, vol. 19, pp. 510-517, 2020.

[41] H. M. Yasin, S. R. Zeebaree, M. A. Sadeeq, S. Y. Ameen, I. M. Ibrahim,

R. R. Zebari, et al., "IoT and ICT based Smart Water Management,
Monitoring and Controlling System: A Review," Asian Journal of

Research in Computer Science, pp. 42-56, 2021.

[42] S. Zeebaree and H. M. Yasin, "Arduino based remote controlling for

home: power saving, security and protection," International Journal of

Scientific & Engineering Research, vol. 5, pp. 266-272, 2014.

[43] K. Jacksi, N. Dimililer, and S. Zeebaree, "State of the art exploration
systems for linked data: a review," Int. J. Adv. Comput. Sci. Appl.

IJACSA, vol. 7, pp. 155-164, 2016.

[44] H. Malallah, S. R. Zeebaree, R. R. Zebari, M. A. Sadeeq, Z. S. Ageed, I.
M. Ibrahim, et al., "A Comprehensive Study of Kernel (Issues and

Concepts) in Different Operating Systems," Asian Journal of Research

in Computer Science, pp. 16-31, 2021.
[45] S. Zeebaree and I. Zebari, "Multilevel Client/Server Peer-to-Peer Video

Broadcasting System," International Journal of Scientific & Engineering

Research, vol. 5, 2014.
[46] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, "Nimble page

management for tiered memory systems," in Proceedings of the Twenty-

Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 331-345.

[47] K. Bukkapatnam, C. K. Rekha, E. Kumaraswamy, and R. Vatti, "Smart
Memory Management (SaMM) For Embedded Systems without MMU,"

in IOP Conference Series: Materials Science and Engineering, 2020, p.

032010.
[48] K. Jacksi, S. R. Zeebaree, and N. Dimililer, "LOD Explorer: Presenting

the Web of Data," Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 9, 2018.

[49] D. Behera and U. R. Jena, "Detailed review on embedded MMU and
their performance analysis on test benches," in 2020 International

Conference on Computational Intelligence for Smart Power System and

Sustainable Energy (CISPSSE), 2020, pp. 1-6.
[50] R. Ibrahim, S. Zeebaree, and K. Jacksi, "Survey on Semantic Similarity

Based on Document Clustering," Adv. sci. technol. eng. syst. j, vol. 4,

pp. 115-122, 2019.
[51] H. S. Yahia, S. R. Zeebaree, M. A. Sadeeq, N. O. Salim, S. F. Kak, A.-

Z. Adel, et al., "Comprehensive Survey for Cloud Computing Based

Nature-Inspired Algorithms Optimization Scheduling," Asian Journal of
Research in Computer Science, pp. 1-16, 2021.

[52] Z. N. Rashid, S. R. Zeebaree, and A. Shengul, "Design and analysis of

proposed remote controlling distributed parallel computing system over
the cloud," in 2019 International Conference on Advanced Science and

Engineering (ICOASE), 2019, pp. 118-123.

[53] I. M. Zebari, S. R. Zeebaree, and H. M. Yasin, "Real Time Video
Streaming From Multi-Source Using Client-Server for Video

Distribution," in 2019 4th Scientific International Conference Najaf

(SICN), 2019, pp. 109-114.
[54] J. Zhang, S. H. Yeung, Y. Shu, B. He, and W. Wang, "Efficient memory

management for gpu-based deep learning systems," arXiv preprint

arXiv:1903.06631, 2019.
[55] H. M. Yasin, S. R. Zeebaree, and I. M. Zebari, "Arduino Based

Automatic Irrigation System: Monitoring and SMS Controlling," in

2019 4th Scientific International Conference Najaf (SICN), 2019, pp.
109-114.

[56] Y. Li, Y. Matsubara, and H. Takada, "A comparative analysis of RTOS

and linux scalability on an embedded many-core processor," Journal of
Information Processing, vol. 26, pp. 225-236, 2018.

[57] R. J. Hassan, S. R. Zeebaree, S. Y. Ameen, S. F. Kak, M. A. Sadeeq, Z.

S. Ageed, et al., "State of Art Survey for IoT Effects on Smart City

Technology: Challenges, Opportunities, and Solutions," Asian Journal

of Research in Computer Science, pp. 32-48, 2021.

[58] K. Jacksi, N. Dimililer, and S. R. Zeebaree, "A survey of exploratory

search systems based on LOD resources," 2015.
[59] S. R. Zeebaree, H. M. Shukur, and B. K. Hussan, "Human resource

management systems for enterprise organizations: A review,"

Periodicals of Engineering and Natural Sciences (PEN), vol. 7, pp. 660-
669, 2019.

[60] Z. Zhu, F. Wu, J. Cao, X. Li, and G. Jia, "A thread-oriented memory

resource management framework for mobile edge computing," IEEE
Access, vol. 7, pp. 45881-45890, 2019.

[61] R. K. Boggavarapu and S. Jiang, "Deduplication-aware I/O Buffer

Management in the Linux Kernel for Improved I/O Performance and
Memory Utilization," in 2020 12th International Conference on

Knowledge and Smart Technology (KST), pp. 70-74.

[62] S. Lee, N. S. Kim, and D. Kim, "Exploiting OS-Level Memory Offlining
for DRAM Power Management," IEEE Computer Architecture Letters,

vol. 18, pp. 141-144, 2019.

[63] L. Liu, M. Xie, and H. Yang, "Memos: revisiting hybrid memory

management in modern operating system," arXiv preprint

arXiv:1703.07725, 2017.

[64] Y. Omori and K. Kimura, "Performance Evaluation on NVMM
Emulator Employing Fine-Grain Delay Injection," in 2019 IEEE Non-

Volatile Memory Systems and Applications Symposium (NVMSA), 2019,

pp. 1-6.

